
MARY L PASSAGE MIDDLE SCHOOL HVAC REPLACEMENT NEWPORT NEWS PUBLIC SCHOOLS

NEWPORT NEWS, VIRGINIA

IFB #014-0-2024/SNB

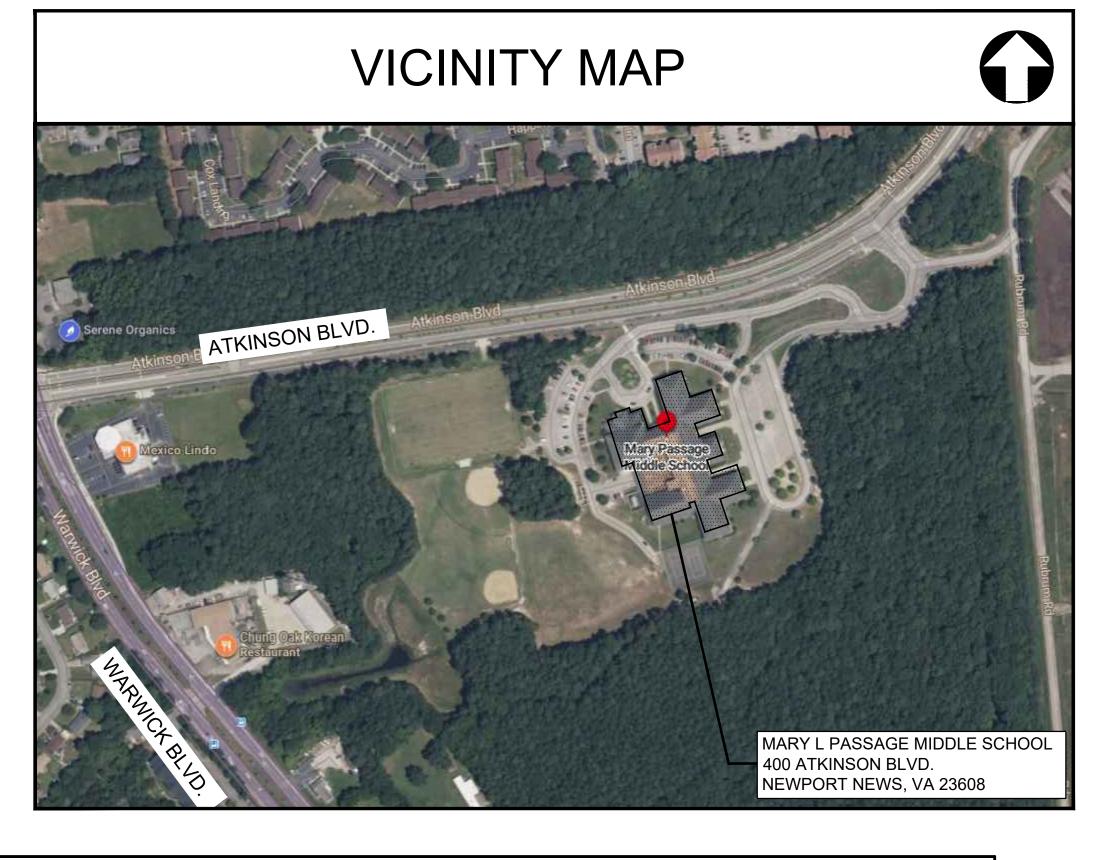
THOMPSON CONSULTING ENGINEERS PROJECT NO. 22-113

DRAWING INDEX

FIRST FLOOR REFLECTED CEILING PLAN - AREA "A" - DEMOLITION AND NEW WORK FIRST FLOOR REFLECTED CEILING PLAN - AREA "B" - DEMOLITION AND NEW WORK FIRST FLOOR REFLECTED CEILING PLAN - AREA "C" - DEMOLITION AND NEW WORK

FIRST FLOOR REFLECTED CEILING PLAN - AREA "D" - DEMOLITION AND NEW WORK

SECOND FLOOR REFLECTED CEILING PLAN - AREA "E" - DEMOLITION AND NEW WORK SECOND FLOOR REFLECTED CEILING PLAN - AREA "F" - DEMOLITION AND NEW WORK SECOND FLOOR REFLECTED CEILING PLAN - AREA "G" - DEMOLITION AND NEW WORK


DRAWING TITLES

BUILDING CODE SUMMARY

	CURRENT BUILDING CODE: VIRGINIA UNIFORM STATEWIDE BUILDING CODE 2018 EDITION.						
	CURRENT CONSTRUCTION CODE: VIRGINIA CONSTRUCTION CODE 2018 EDITION.						
	CURRENT BUILDING CODE: VIRGINIA EXISTING BUILDING CODE 2018 EDITION. LEVEL 1 ALTERATION.						
	TOTAL GROSS FLOOR AREA: <u>138,760 SF</u> .						
	USE GROUP CLASSIFICATION: EDUCATION GROUP E AND ASSEMBLY GROUP A3.						
	CONSTRUCTION TYPE: TYPE 2A, NONCOMBUSTIBLE - FULLY SPRINKLERED AND TYPE 3A, ORDINARY - FULLY SPRINKLERED.						
	DRAWING INDEX						
SHEET NO.	DRAWING TITLES						
MD3.2	ENLARGED FLOOR PLAN - MECHANICAL MEZZANINE - DEMOLITION						
MD3.3	ENLARGED FLOOR PLAN - MECHANICAL MEZZANINE - DEMOLITION						

	DRAWING INDEX
SHEET NO.	DRAWING TITLES
MD3.2	ENLARGED FLOOR PLAN - MECHANICAL MEZZANINE - DEMOLITION
MD3.3	ENLARGED FLOOR PLAN - MECHANICAL MEZZANINE - DEMOLITION
MD4.1	CHILLED / CONDENSER WATER PIPING DIAGRAMS - DEMOLITION AND NEW WORK
MD4.2	HOT WATER PIPING DIAGRAMS - DEMOLITION AND NEW WORK
MD5.1	FIELD PICTURES - MECHANICAL
MD5.2	FIELD PICTURES - MECHANICAL
M1.1	FIRST FLOOR PLAN - AREA "A" - MECHANICAL - NEW WORK
M1.2	FIRST FLOOR PLAN - AREA "B" - MECHANICAL - NEW WORK
M1.3	FIRST FLOOR PLAN - AREA "C" - MECHANICAL - NEW WORK
M1.4	FIRST FLOOR PLAN - AREA "D" - MECHANICAL - NEW WORK
M1.5	SECOND FLOOR PLAN - AREA "E" - MECHANICAL - NEW WORK
M1.6	SECOND FLOOR PLAN - AREA "F" - MECHANICAL - NEW WORK
M1.7	SECOND FLOOR PLAN - AREA "G" - MECHANICAL - NEW WORK
M1.8	ROOF PLAN - MECHANICAL - NEW WORK
M2.1	FIRST FLOOR PLAN - AREA "A" - PIPING - NEW WORK
M2.2	FIRST FLOOR PLAN - AREA "B" - PIPING - NEW WORK
M2.3	FIRST FLOOR PLAN - AREA "C" - PIPING - NEW WORK
M2.4	FIRST FLOOR PLAN - AREA "D" - PIPING - NEW WORK
M2.5	SECOND FLOOR PLAN - AREA "E" - PIPING - NEW WORK
M2.6	SECOND FLOOR PLAN - AREA "F" - PIPING - NEW WORK
M2.7	SECOND FLOOR PLAN - AREA "G" - PIPING - NEW WORK
M3.1	ENLARGED FLOOR PLAN - MECHANICAL ROOM - NEW WORK
M3.2	ENLARGED FLOOR PLAN - MECHANICAL MEZZANINE - NEW WORK
M3.3	ENLARGED FLOOR PLAN - MECHANICAL MEZZANINE - NEW WORK
M4.1	MECHANICAL DETAILS
M4.2	MECHANICAL DETAILS
M5.1	AUTOMATIC TEMPERATURE CONTROLS
M5.2	AUTOMATIC TEMPERATURE CONTROLS
M5.3	AUTOMATIC TEMPERATURE CONTROLS
M5.4	AUTOMATIC TEMPERATURE CONTROLS
M5.5	AUTOMATIC TEMPERATURE CONTROLS
M5.6	AUTOMATIC TEMPERATURE CONTROLS
M5.7	EXISTING AUTOMATIC TEMPERATURE CONTROLS
M5.8	EXISTING AUTOMATIC TEMPERATURE CONTROLS

	DRAWING INDEX								
SHEET NO.	DRAWING TITLES								
M5.9	EXISTING AUTOMATIC TEMPERATURE CONTROLS								
M6.1	CONTROL RISER DIAGRAMS								
M6.2	CONTROL RISER DIAGRAMS								
E0.1	ELECTRICAL LEGEND, ABBREVIATIONS, NOTES								
ED1.1	PARTIAL FIRST FLOOR PLAN - AREA 'A' - LIGHTING & AUXILIARY SYSTEMS - DEMOLITION & NEW WORK								
ED1.2	PARTIAL FIRST FLOOR PLAN - AREA 'B' - LIGHTING & AUXILIARY SYSTEMS - DEMOLITION & NEW WORK								
ED1.3	PARTIAL FIRST FLOOR PLAN - AREA 'C' - LIGHTING & AUXILIARY SYSTEMS - DEMOLITION & NEW WORK								
ED1.4	PARTIAL FIRST FLOOR PLAN - AREA 'D' - LIGHTING & AUXILIARY SYSTEMS - DEMOLITION & NEW WORK								
ED1.5	PARTIAL SECOND FLOOR PLAN - AREA 'E' - LIGHTING & AUXILIARY SYSTEMS - DEMOLITION & NEW WORK								
ED1.6	PARTIAL SECOND FLOOR PLAN - AREA 'F' - LIGHTING & AUXILIARY SYSTEMS - DEMOLITION & NEW WORK								
ED1.7	PARTIAL SECOND FLOOR PLAN - AREA 'G' - LIGHTING & AUXILIARY SYSTEMS - DEMOLITION & NEW WORK								
ED2.1	PARTIAL FIRST FLOOR PLAN - AREA 'A' - HVAC POWER - DEMOLITION								
ED2.2	PARTIAL FIRST FLOOR PLAN - AREA 'B' - HVAC POWER - DEMOLITION								
ED2.3	PARTIAL FIRST FLOOR PLAN - AREA 'C' - HVAC POWER - DEMOLITION								
ED2.4	PARTIAL FIRST FLOOR PLAN - AREA 'D' - HVAC POWER - DEMOLITION								
ED2.5	PARTIAL SECOND FLOOR PLAN - AREA 'E' - HVAC POWER - DEMOLITION								
ED2.6	PARTIAL SECOND FLOOR PLAN - AREA 'F' - HVAC POWER - DEMOLITION								
ED2.7	PARTIAL SECOND FLOOR PLAN - AREA 'G' - HVAC POWER - DEMOLITION								
ED2.8	ROOF PLAN - HVAC POWER - DEMOLITION								
E1.1	PARTIAL FIRST FLOOR PLAN - AREA 'A' - HVAC POWER - NEW WORK								
E1.2	PARTIAL FIRST FLOOR PLAN - AREA 'B' - HVAC POWER - NEW WORK								
E1.3	PARTIAL FIRST FLOOR PLAN - AREA 'C' - HVAC POWER - NEW WORK								
E1.4	PARTIAL FIRST FLOOR PLAN - AREA 'D' - HVAC POWER - NEW WORK								
E1.5	PARTIAL FIRST FLOOR PLAN - AREA 'E' - HVAC POWER - NEW WORK								
E1.6	PARTIAL FIRST FLOOR PLAN - AREA 'F' - HVAC POWER - NEW WORK								
E1.7	PARTIAL FIRST FLOOR PLAN - AREA 'F' - HVAC POWER - NEW WORK								
E1.8	ROOF PLAN - HVAC POWER - NEW WORK								

ACEMEN

DESIGNED BY: CHECKED BY:

© COPYRIGHT THOMPSON CONSULTING ENGINEERS

SHEET NO.

MD1.6

TITLE SHEET

GENERAL SITE PLAN

MECHANICAL SCHEDULES MECHANICAL SCHEDULES MECHANICAL SCHEDULES **VENTILATION CALCULATIONS VENTILATION CALCULATIONS**

GENERAL NOTES, LEGEND AND ABBREVIATIONS

FIRST FLOOR PLAN - AREA "A" - MECHANICAL - DEMOLITION FIRST FLOOR PLAN - AREA "B" - MECHANICAL - DEMOLITION FIRST FLOOR PLAN - AREA "C" - MECHANICAL - DEMOLITION FIRST FLOOR PLAN - AREA "D" - MECHANICAL - DEMOLITION

SECOND FLOOR PLAN - AREA "E" - MECHANICAL - DEMOLITION

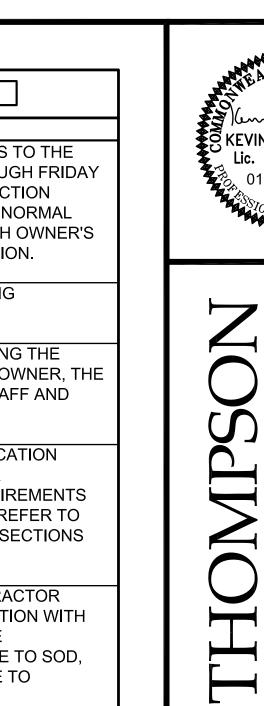
SECOND FLOOR PLAN - AREA "F" - MECHANICAL - DEMOLITION SECOND FLOOR PLAN - AREA "G" - MECHANICAL - DEMOLITION

FIRST FLOOR PLAN - AREA "A" - PIPING - DEMOLITION

FIRST FLOOR PLAN - AREA "B" - PIPING - DEMOLITION FIRST FLOOR PLAN - AREA "C" - PIPING - DEMOLITION

FIRST FLOOR PLAN - AREA "D" - PIPING - DEMOLITION

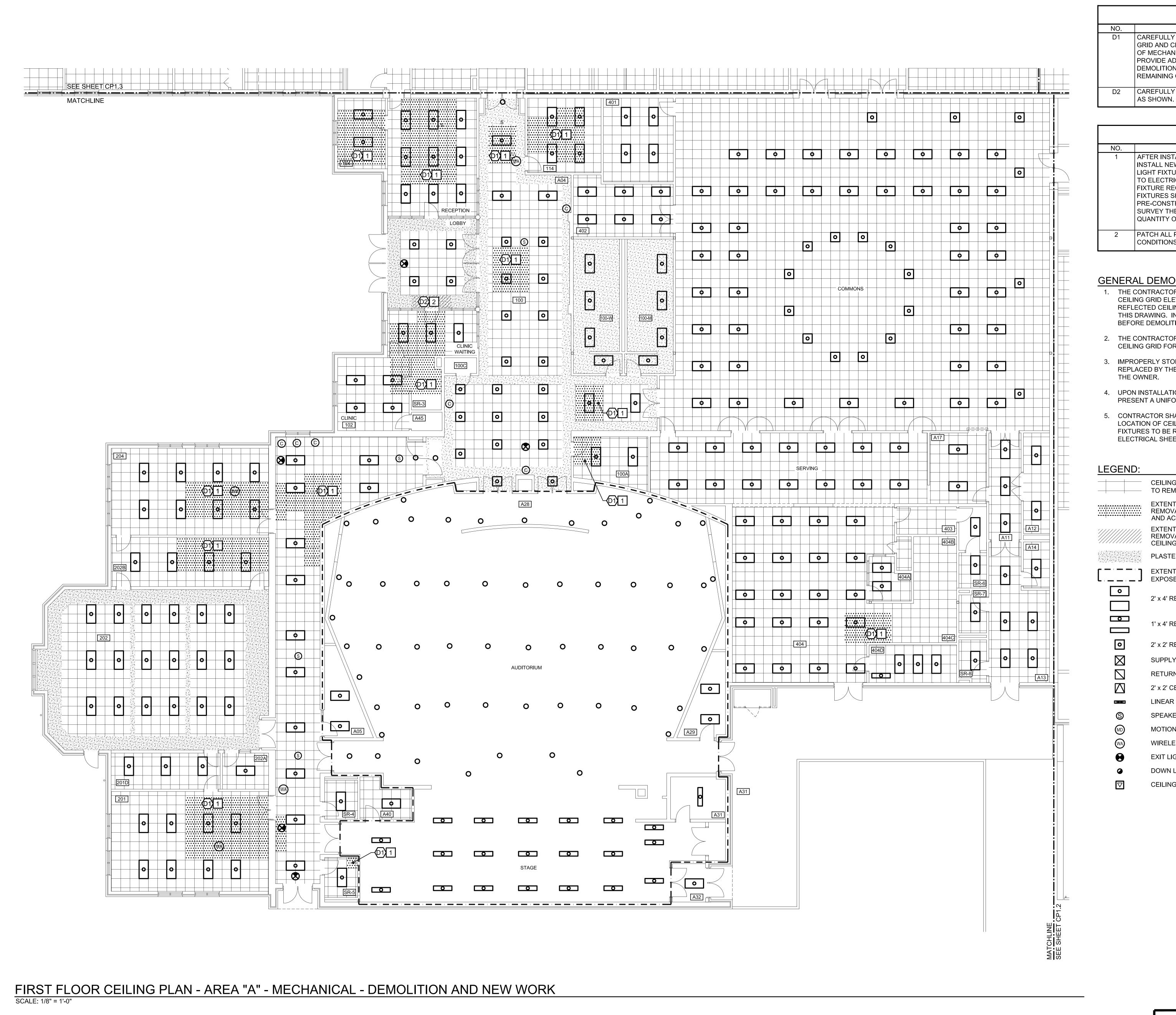
SECOND FLOOR PLAN - AREA "E" - PIPING - DEMOLITION


SECOND FLOOR PLAN - AREA "F" - PIPING - DEMOLITION SECOND FLOOR PLAN - AREA "G" - PIPING - DEMOLITION

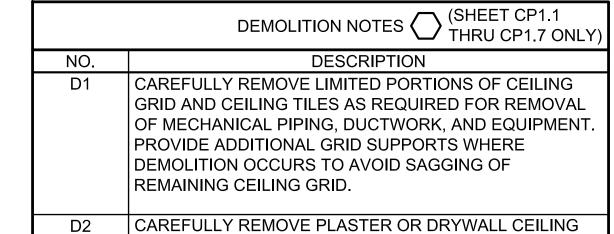
ENLARGED FLOOR PLAN - MECHANICAL ROOM - DEMOLITION

ROOF PLAN - MECHANICAL - DEMOLITION

	SITE PLAN NOTES (THIS SHEET ONLY)
NO.	DESCRIPTION
1	CONTRACTOR SHALL BE GRANTED ACCESS TO THE LIMITS OF CONSTRUCTION MONDAY THROUGH FRIDAY 7:00 AM TO 4:00 PM DURING THE CONSTRUCTION PERIOD. ACCESS TO THE BUILDING AFTER NORMAL WORKING HOURS SHALL BE ALLOWED WITH OWNER'S (NNPS) PRIOR APPROVAL AND COORDINATION.
2	STAFF PARKING, NO CONTRACTOR PARKING PERMITTED OUTSIDE DESIGNATED AREA.
3	KEEP DRIVEWAYS AND ENTRANCES SERVING THE PREMISES CLEAR AND AVAILABLE TO THE OWNER, THE OWNER'S EMPLOYEES, TEACHERS AND STAFF AND EMERGENCY VEHICLES AT ALL TIMES.
4	REFER TO THE PROJECT MANUAL SPECIFICATION SECTION 018000 "CODE OF CONDUCT" FOR ADMINISTRATIVE AND PROCEDURAL REQUIREMENTS WHILE WORKING ON SCHOOL PREMISES. REFER TO OTHER PROJECT MANUAL SPECIFICATION SECTIONS FOR ADDITIONAL REQUIREMENTS.
5	RECOMMENDED CRANE LOCATION. CONTRACTOR SHALL COORDINATE ACTUAL CRANE LOCATION WITH WORK REQUIRED. CONTRACTOR SHALL BE RESPONSIBLE FOR REPAIR OF ALL DAMAGE TO SOD, ACCESS ROAD, AND SITE. REPAIR DAMAGE TO PRE-CONSTRUCTION CONDITIONS.
6	CONTRACTOR SHALL USE AREA AS INDICATED FOR PARKING AND STAGING OF EQUIPMENT/MATERIALS. ALI MATERIAL STORED ONSITE SHALL BE SECURED IN CONTRACTORS LOCKED CONSTRUCTION TRAILER. ALL OTHER PARKING AREAS SHALL NOT BE USED WITHOUT OWNER'S PRIOR APPROVAL.
7	ANY POWER OUTAGES AFFECTING THIS AREA SHALL ONLY TAKE PLACE DURING WEEKEND HOURS AND MUST BE COORDINATED WITH OWNER AT LEAST 7 DAYS PRIOR TO SCHEDULED OUTAGE.



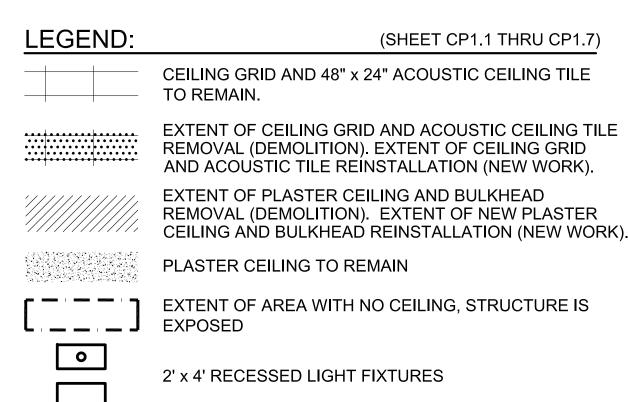
MARY L PASSAGE MIDDLE SCHOOL HVAC REPLACEMEN


COMM. NO: DESIGNED BY: DRAWN BY: CHECKED BY:

G0.1

© COPYRIGHT THOMPSON CONSULTING ENGINEERS

© COPYRIGHT THOMPSON CONSULTING ENGINEERS

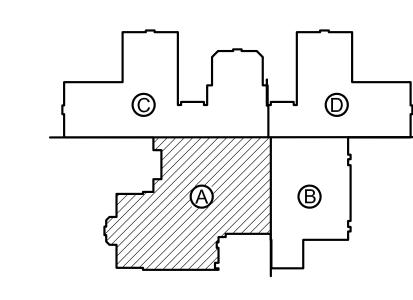

	NEW WORK NOTES (SHEET CP1.1 THRU CP1.7 ONLY)
NO.	DESCRIPTION
1	AFTER INSTALLATION OF NEW WORK, PROVIDE AND INSTALL NEW CEILING TILES. REINSTALL GRID AND LIGHT FIXTURES RETAINED FROM DEMOLITION. REFER TO ELECTRICAL DRAWINGS FOR ADDITIONAL LIGHT FIXTURE REQUIREMENTS. CEILING GRID AND LIGHT FIXTURES SHALL BE RESTORED TO THEIR PRE-CONSTRUCTION CONDITION. CONTRACTOR SHALL SURVEY THE CEILING TO DETERMINE SIZE AND QUANTITY OF TILES.
2	PATCH ALL PLASTER CEILINGS TO PRE-CONSTRUCTION CONDITIONS.

GENERAL DEMOLITION NOTES:

(SHEET CP1.1 THRU CP1.7)

1. THE CONTRACTORS SHALL FIELD VERIFY ALL REFLECTED CEILING GRID ELEVATIONS, ORIENTATIONS, AND POSITIONS. REFLECTED CEILING GRID MAY VARY FROM THAT SHOWN ON THIS DRAWING. INVENTORY ALL ACOUSTIC CEILING TILES BEFORE DEMOLITION.

- 2. THE CONTRACTOR SHALL STORE AND PROTECT ALL REMOVED CEILING GRID FOR RE-INSTALLATION WHERE INDICATED.
- IMPROPERLY STORED AND HANDLED MATERIALS SHALL BE REPLACED BY THE CONTRACTOR AT NO ADDITIONAL COST TO THE OWNER.
- 4. UPON INSTALLATION, PROVIDE TILES OF LIKE APPEARANCE TO PRESENT A UNIFORM CEILING FINISH.
- 5. CONTRACTOR SHALL COORDINATE EXACT QUANTITY AND ELECTRICAL SHEETS FOR FIXTURES REQUIRING REMOVAL


1' x 4' RECESSED LIGHT FIXTURES 2' x 2' RECESSED LIGHT FIXTURE

RETURN AIR GRILLE

LINEAR SUPPLY DIFFUSER

WIRELESS ACCESS POINT EXIT LIGHT

DOWN LIGHT

CHECKED BY:

KEY PLAN

ACEMEN

SSAGE MIDDLE SCHOOL
NEWPORT NEWS PUBLIC S

PA

MARY

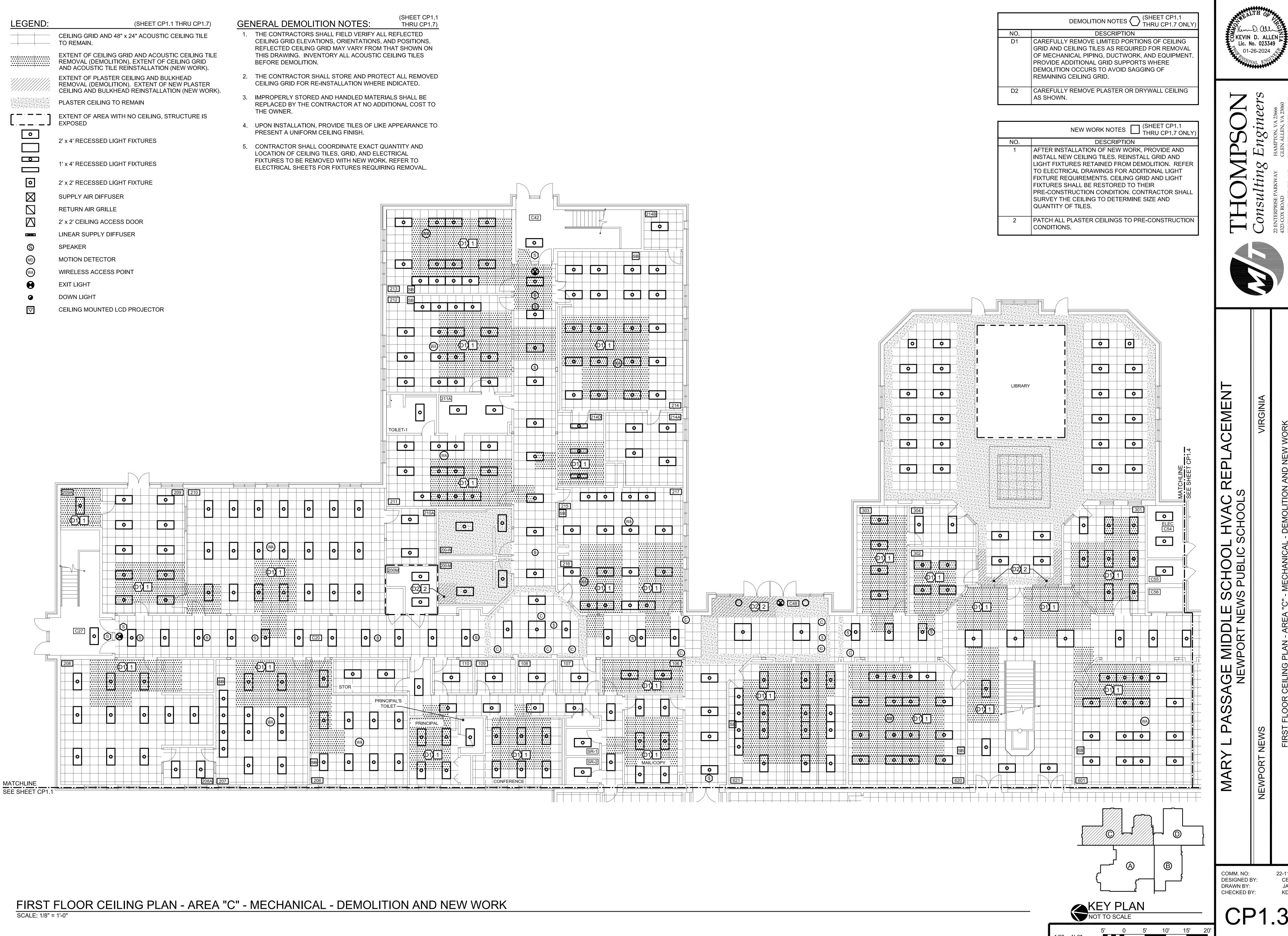
SUPPLY AIR DIFFUSER

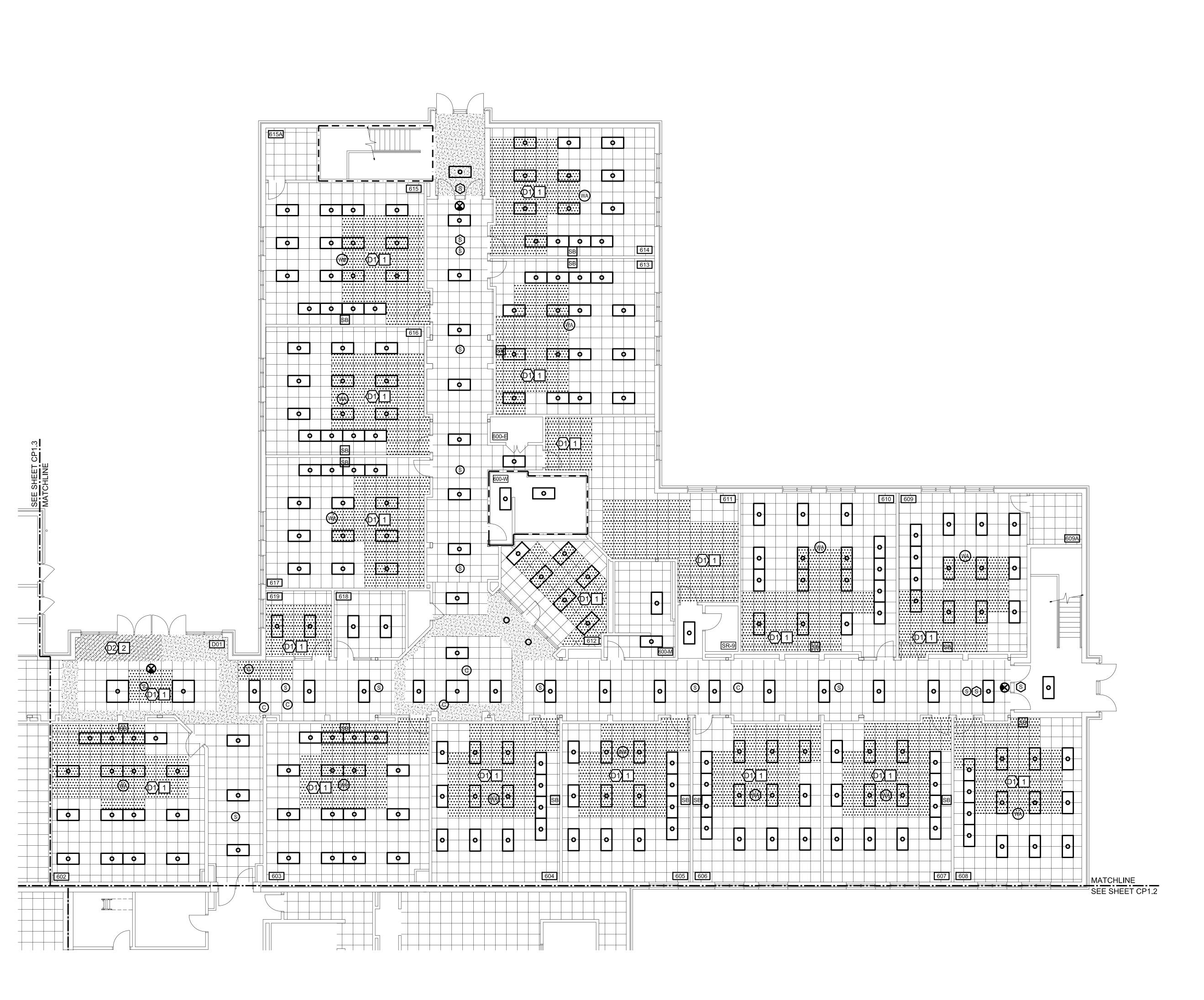
2' x 2' CEILING ACCESS DOOR

MOTION DETECTOR

CEILING MOUNTED LCD PROJECTOR

DESIGNED BY:

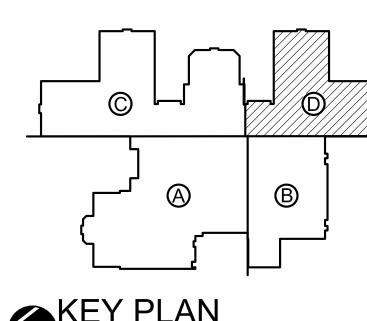




MARY L PASSAGE MIDDLE SCHOOL HVAC REPLACEMEN NEWPORT NEWS PUBLIC SCHOOLS

KEY PLAN
NOT TO SCALE

DEMOLITION NOTES (SHEET CP1.1 THRU CP1.7 ONLY) DESCRIPTION CAREFULLY REMOVE LIMITED PORTIONS OF CEILING GRID AND CEILING TILES AS REQUIRED FOR REMOVAL OF MECHANICAL PIPING, DUCTWORK, AND EQUIPMENT PROVIDE ADDITIONAL GRID SUPPORTS WHERE DEMOLITION OCCURS TO AVOID SAGGING OF REMAINING CEILING GRID. CAREFULLY REMOVE PLASTER OR DRYWALL CEILING AS SHOWN.


	NEW WORK NOTES (SHEET CP1.1 THRU CP1.7 ONLY)
NO.	DESCRIPTION
1	AFTER INSTALLATION OF NEW WORK, PROVIDE AND INSTALL NEW CEILING TILES. REINSTALL GRID AND LIGHT FIXTURES RETAINED FROM DEMOLITION. REFER TO ELECTRICAL DRAWINGS FOR ADDITIONAL LIGHT FIXTURE REQUIREMENTS. CEILING GRID AND LIGHT FIXTURES SHALL BE RESTORED TO THEIR PRE-CONSTRUCTION CONDITION. CONTRACTOR SHALL SURVEY THE CEILING TO DETERMINE SIZE AND QUANTITY OF TILES.
2	PATCH ALL PLASTER CEILINGS TO PRE-CONSTRUCTION CONDITIONS.

GENERAL DEMOLITION NOTES:

(SHEET CP1.1 THRU CP1.7)

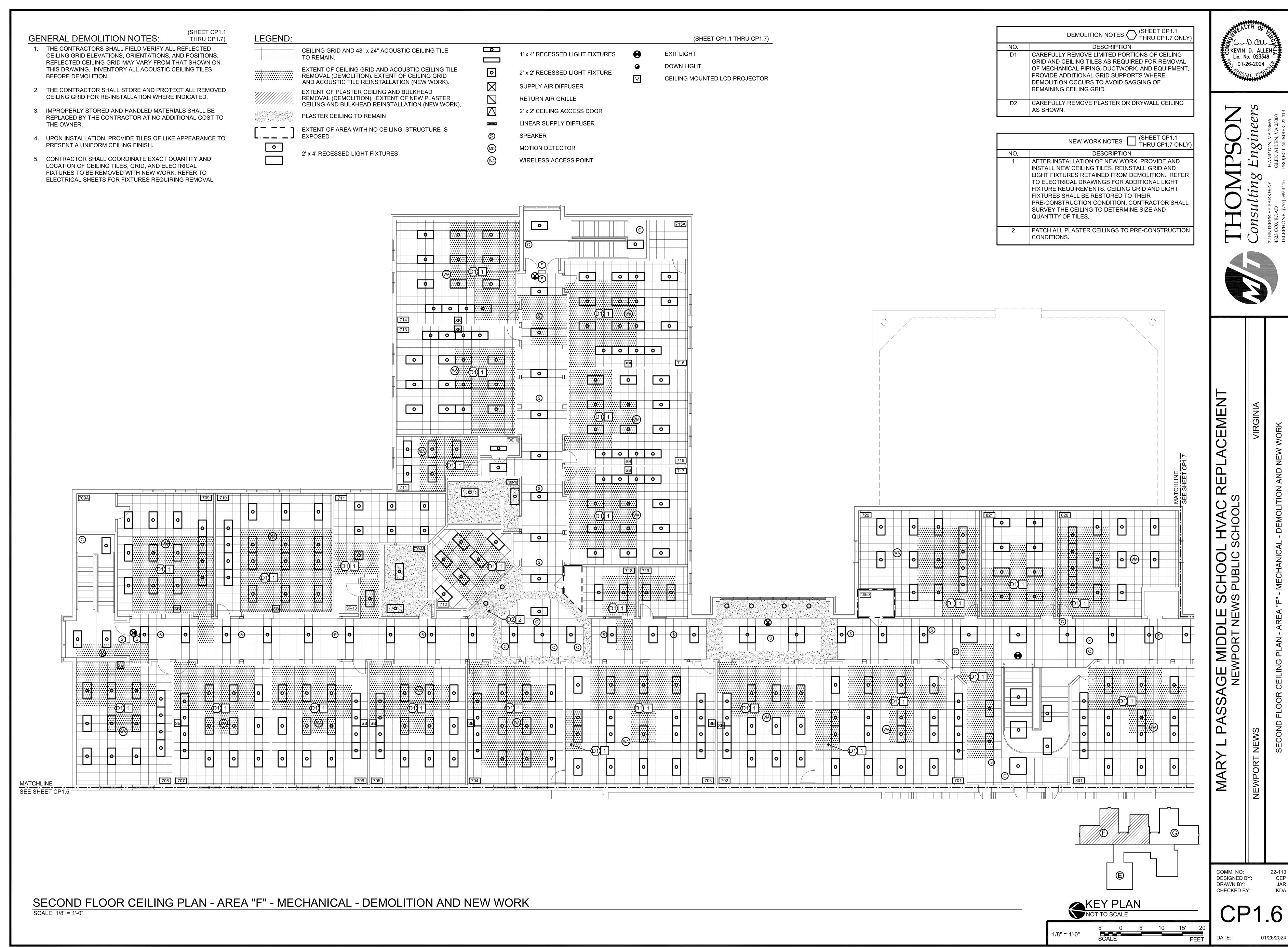
- 1. THE CONTRACTORS SHALL FIELD VERIFY ALL REFLECTED CEILING GRID ELEVATIONS, ORIENTATIONS, AND POSITIONS. REFLECTED CEILING GRID MAY VARY FROM THAT SHOWN ON THIS DRAWING. INVENTORY ALL ACOUSTIC CEILING TILES BEFORE DEMOLITION.
- 2. THE CONTRACTOR SHALL STORE AND PROTECT ALL REMOVED CEILING GRID FOR RE-INSTALLATION WHERE INDICATED.
- 3. IMPROPERLY STORED AND HANDLED MATERIALS SHALL BE REPLACED BY THE CONTRACTOR AT NO ADDITIONAL COST TO THE OWNER.
- 4. UPON INSTALLATION, PROVIDE TILES OF LIKE APPEARANCE TO PRESENT A UNIFORM CEILING FINISH.
- 5. CONTRACTOR SHALL COORDINATE EXACT QUANTITY AND

LEGEND:	(SHEET CP1.1 THRU CP1.7)
	CEILING GRID AND 48" \times 24" ACOUSTIC CEILING TILE TO REMAIN.
•••••••	EXTENT OF CEILING GRID AND ACOUSTIC CEILING TILE REMOVAL (DEMOLITION). EXTENT OF CEILING GRID AND ACOUSTIC TILE REINSTALLATION (NEW WORK).
	EXTENT OF PLASTER CEILING AND BULKHEAD REMOVAL (DEMOLITION). EXTENT OF NEW PLASTER CEILING AND BULKHEAD REINSTALLATION (NEW WORK)
	PLASTER CEILING TO REMAIN
	EXTENT OF AREA WITH NO CEILING, STRUCTURE IS EXPOSED
• • • • • • • • • • • • • • • • • • •	2' x 4' RECESSED LIGHT FIXTURES
	1' x 4' RECESSED LIGHT FIXTURES
0	2' x 2' RECESSED LIGHT FIXTURE
\boxtimes	SUPPLY AIR DIFFUSER
	RETURN AIR GRILLE
	2' x 2' CEILING ACCESS DOOR
	LINEAR SUPPLY DIFFUSER
S	SPEAKER
MD	MOTION DETECTOR
WA	WIRELESS ACCESS POINT
•	EXIT LIGHT
•	DOWN LIGHT
_	

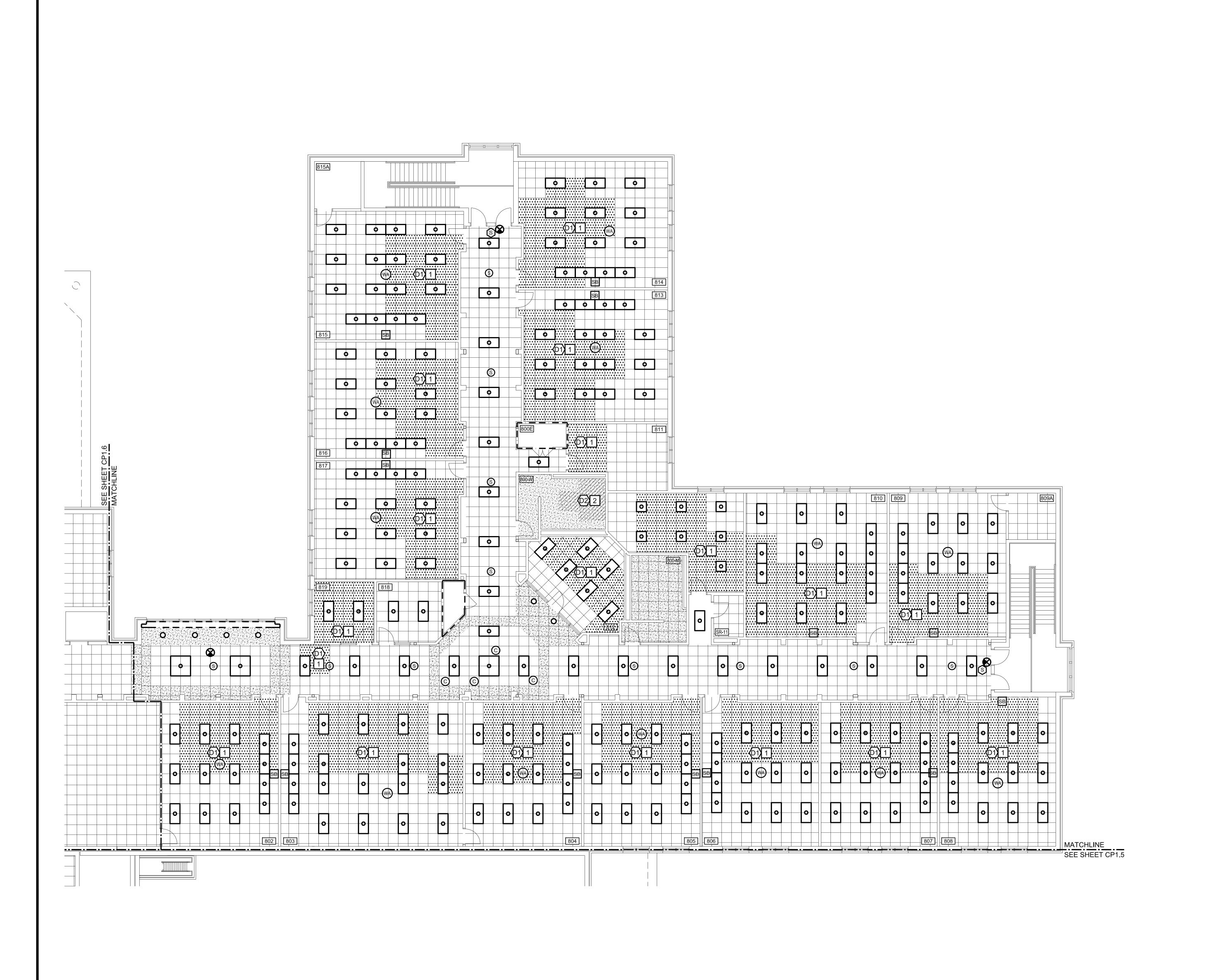
KEY PLAN

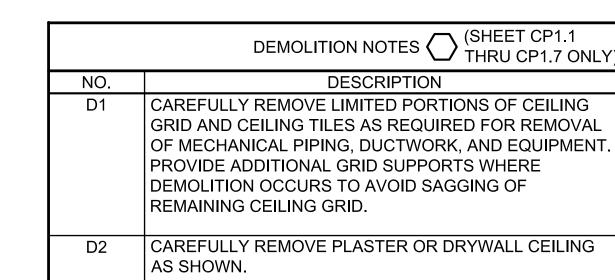
NOT TO SCALE

FIRST FLOOR CEILING PLAN - AREA "D" - MECHANICAL - DEMOLITION AND NEW WORK


ACEMEN

PASSAGE MIDDLE SCHOOL
NEWPORT NEWS PUBLIC S


MARY


CEILING MOUNTED LCD PROJECTOR

GENERAL DEMOLITION NOTES: (SHEET CP1.1 THRU CP1.7) DEMOLITION NOTES (SHEET CP1.1 THRU CP1.7 ONLY) NEW WORK NOTES (SHEET CP1.1 THRU CP1.7 ONLY) 1. THE CONTRACTORS SHALL FIELD VERIFY ALL REFLECTED 3. IMPROPERLY STORED AND HANDLED MATERIALS SHALL BE CONTRACTOR SHALL COORDINATE EXACT QUANTITY AND CEILING GRID ELEVATIONS, ORIENTATIONS, AND REPLACED BY THE CONTRACTOR AT NO ADDITIONAL COST LOCATION OF CEILING TILES, GRID, AND ELECTRICAL DESCRIPTION NO. DESCRIPTION POSITIONS. REFLECTED CEILING GRID MAY VARY FROM TO THE OWNER. FIXTURES TO BE REMOVED WITH NEW WORK, REFER TO CAREFULLY REMOVE LIMITED PORTIONS OF CEILING AFTER INSTALLATION OF NEW WORK, PROVIDE AND INSTALL NEW ELECTRICAL SHEETS FOR FIXTURES REQUIRING REMOVAL. THAT SHOWN ON THIS DRAWING. INVENTORY ALL GRID AND CEILING TILES AS REQUIRED FOR REMOVAL CEILING TILES. REINSTALL GRID AND LIGHT FIXTURES RETAINED 4. UPON INSTALLATION, PROVIDE TILES OF LIKE ACOUSTIC CEILING TILES BEFORE DEMOLITION. OF MECHANICAL PIPING, DUCTWORK, AND EQUIPMENT. FROM DEMOLITION. REFER TO ELECTRICAL DRAWINGS FOR APPEARANCE TO PRESENT A UNIFORM CEILING FINISH. PROVIDE ADDITIONAL GRID SUPPORTS WHERE ADDITIONAL LIGHT FIXTURE REQUIREMENTS. CEILING GRID AND 2. THE CONTRACTOR SHALL STORE AND PROTECT ALL DEMOLITION OCCURS TO AVOID SAGGING OF LIGHT FIXTURES SHALL BE RESTORED TO THEIR REMOVED CEILING GRID FOR RE-INSTALLATION WHERE REMAINING CEILING GRID. PRE-CONSTRUCTION CONDITION. CONTRACTOR SHALL SURVEY INDICATED. THE CEILING TO DETERMINE SIZE AND QUANTITY OF TILES. MATCHLINE 0 0 0 o 0 .0. MECHANICAL 0 MECHANICAL GYMNASIUM ACEMEN REPL PASSAGE MIDDLE SCHOOL
NEWPORT NEWS PUBLIC S AUDITORIUM LEGEND: (SHEET CP1.1 THRU CP1.7) CEILING GRID AND 48" x 24" ACOUSTIC CEILING TILE 2' x 4' RECESSED LIGHT FIXTURES REMOVAL (DEMOLITION). EXTENT OF CEILING GRID AND ACOUSTIC TILE REINSTALLATION (NEW WORK). 1' x 4' RECESSED LIGHT FIXTURES PLASTER CEILING TO REMAIN SPEAKER EXTENT OF AREA WITH NO CEILING, STRUCTURE IS EXPOSED WIRELESS ACCESS POINT CHECKED BY: KEY PLAN
NOT TO SCALE SECOND FLOOR CEILING PLAN - AREA "E" - MECHANICAL - DEMOLITION AND NEW WORK

© COPYRIGHT THOMPSON CONSULTING ENGINEERS

	NEW WORK NOTES (SHEET CP1.1 THRU CP1.7 ONLY)
NO.	DESCRIPTION
1	AFTER INSTALLATION OF NEW WORK, PROVIDE AND INSTALL NEW CEILING TILES. REINSTALL GRID AND LIGHT FIXTURES RETAINED FROM DEMOLITION. REFER TO ELECTRICAL DRAWINGS FOR ADDITIONAL LIGHT FIXTURE REQUIREMENTS. CEILING GRID AND LIGHT FIXTURES SHALL BE RESTORED TO THEIR PRE-CONSTRUCTION CONDITION. CONTRACTOR SHALL SURVEY THE CEILING TO DETERMINE SIZE AND QUANTITY OF TILES.
2	PATCH ALL PLASTER CEILINGS TO PRE-CONSTRUCTION CONDITIONS.

GENERAL DEMOLITION NOTES:

(SHEET CP1.1 THRU CP1.7)

1. THE CONTRACTORS SHALL FIELD VERIFY ALL REFLECTED CEILING GRID ELEVATIONS, ORIENTATIONS, AND POSITIONS. REFLECTED CEILING GRID MAY VARY FROM THAT SHOWN ON THIS DRAWING. INVENTORY ALL ACOUSTIC CEILING TILES BEFORE DEMOLITION.

- 2. THE CONTRACTOR SHALL STORE AND PROTECT ALL REMOVED CEILING GRID FOR RE-INSTALLATION WHERE INDICATED.
- 3. IMPROPERLY STORED AND HANDLED MATERIALS SHALL BE REPLACED BY THE CONTRACTOR AT NO ADDITIONAL COST TO THE OWNER.
- 4. UPON INSTALLATION, PROVIDE TILES OF LIKE APPEARANCE TO PRESENT A UNIFORM CEILING FINISH.
- 5. CONTRACTOR SHALL COORDINATE EXACT QUANTITY AND

LEGEND:	(SHEET CP1.1 THRU CP1.7)
	CEILING GRID AND 48" x 24" ACOUSTIC CEILING TILE TO REMAIN.
***	EXTENT OF CEILING GRID AND ACOUSTIC CEILING TILE REMOVAL (DEMOLITION). EXTENT OF CEILING GRID AND ACOUSTIC TILE REINSTALLATION (NEW WORK).
	EXTENT OF PLASTER CEILING AND BULKHEAD REMOVAL (DEMOLITION). EXTENT OF NEW PLASTER CEILING AND BULKHEAD REINSTALLATION (NEW WORK).
	PLASTER CEILING TO REMAIN
	EXTENT OF AREA WITH NO CEILING, STRUCTURE IS EXPOSED
	2' x 4' RECESSED LIGHT FIXTURES
	1' x 4' RECESSED LIGHT FIXTURES
0	2' x 2' RECESSED LIGHT FIXTURE
\boxtimes	SUPPLY AIR DIFFUSER
	RETURN AIR GRILLE
	2' x 2' CEILING ACCESS DOOR
	LINEAR SUPPLY DIFFUSER
S	SPEAKER
MD	MOTION DETECTOR
WA	WIRELESS ACCESS POINT
•	EXIT LIGHT
•	DOWN LIGHT
abla	CEILING MOUNTED LCD PROJECTOR

ACEMEN PASSAGE MIDDLE SCHOOL
NEWPORT NEWS PUBLIC S MARY

CHECKED BY:

KEY PLAN
NOT TO SCALE

© COPYRIGHT THOMPSON CONSULTING ENGINEERS

SECOND FLOOR CEILING PLAN - AREA "G" - MECHANICAL - DEMOLITION AND NEW WORK

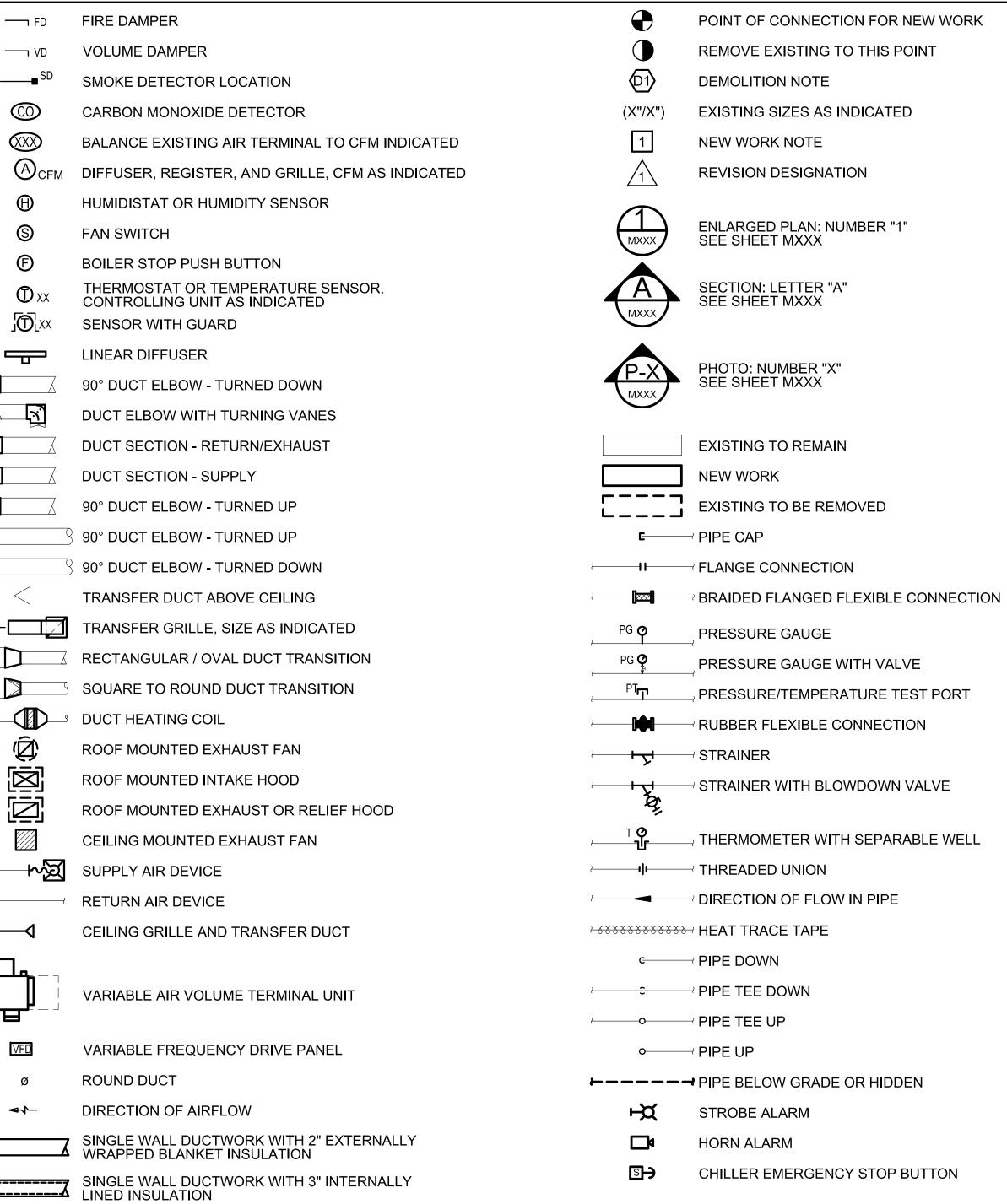
GENERAL DEMOLITION NOTES

- 1. WHERE EQUIPMENT IS INDICATED TO BE REMOVED, IT SHALL MEAN COMPLETE REMOVAL OF EQUIPMENT, INCLUDING CURBS, SUPPORTS, GUYS, ANCHORS, BRACKETS, CONTROLS AND INCIDENTAL ITEMS CONNECTED OR FASTENED TO EQUIPMENT. OWNER MAINTAINS THE OWNERSHIP OF ALL ITEMS TAGGED OR IDENTIFIED.
- 2. WHERE PIPING IS INDICATED TO BE REMOVED, IT SHALL MEAN COMPLETE REMOVAL OF PIPING, INCLUDING VALVES, FITTINGS, INSULATION, SUPPORTS, HANGERS, BRACKETS, CONTROLS AND INCIDENTAL ITEMS CONNECTED OR FASTENED TO THE PIPING. PIPING IS DIAGRAMMATIC AND INDICATES THE GENERAL EXTENT OF WORK. NO ATTEMPT IS MADE TO SHOW EVERY ELL, TEE, OFFSET, FITTING AND VALVE, REMOVE PIPING AS INDICATED AND SPECIFIED.
- WHERE DUCTWORK IS INDICATED TO BE REMOVED, IT SHALL MEAN COMPLETE REMOVAL OF DUCTWORK, INCLUDING FITTINGS, INSULATION, SUPPORTS, BRACKETS, CONTROLS AND INCIDENTAL ITEMS CONNECTED OR FASTENED TO THE DUCTWORK. DUCTWORK IS DIAGRAMMATIC AND INDICATES THE GENERAL EXTENT OF WORK. NO ATTEMPT IS MADE TO SHOW EVERY ELL, TEE, OFFSET AND FITTING. REMOVE DUCTWORK AS INDICATED AND SPECIFIED.
- REFER TO REFLECTED CEILING PLANS FOR DEMOLITION AND NEW WORK RELATED TO CEILINGS.
- CONTRACTOR SHALL RECLAIM AND DISPOSE OF ALL REFRIGERANT IN ACCORDANCE WITH ALL STATE AND LOCAL CODES PRIOR TO REMOVING THE EXISTING UNIT.

GENERAL NOTES

- 1. CONTRACTOR SHALL VISIT JOB SITE TO DETERMINE EXTENT OF WORK INVOLVED PRIOR TO BIDDING THE PROJECT.
- 2. THE MECHANICAL SYSTEM HAS BEEN DESIGNED IN ACCORDANCE WITH THE 2018 VIRGINIA UNIFORM STATEWIDE BUILDING CODE.
- 3. COORDINATE LOCATION OF ALL DUCTWORK, SUPPLY AND RETURN DEVICES, EXHAUST FANS, THERMOSTATS AND OTHER WALL OR CEILING MOUNTED EQUIPMENT WITH REFLECTED CEILING PLANS, LIGHT FIXTURES, SPRINKLER SYSTEMS AND ACCESSORIES INSTALLED BY OTHER TRADES SO AS TO PRESENT A NEAT AND ATTRACTIVE INSTALLATION THROUGHOUT THE BUILDING.
- 4. ALL PIPING, VALVES, DUCTWORK, ETC., SHALL BE CONCEALED UNLESS OTHERWISE NOTED.
- PIPING ARRANGEMENTS ARE DIAGRAMMATIC.
- 6. PIPING PASSING THROUGH WATERPROOF MEMBRANES SHALL BE MADE WATERTIGHT.
- 7. ARRANGE PIPING AND DUCTWORK PARTICULARLY ABOVE CEILING AS REQUIRED TO CLEAR STRUCTURE, CONDUIT, LIGHTS, ETC., ALLOWING SPACE FOR HANGERS, INSULATION, ETC.
- 8. SEAL AROUND AND MAKE AIRTIGHT ALL DUCTS AND PIPES PENETRATING INSULATED CEILINGS AND WALLS.
- 9. DUCT DIMENSIONS MAY BE MODIFIED AS APPROVED BY ENGINEER.
- 10. DUCT SIZES SHOWN ARE INSIDE FREE AREA DIMENSIONS.
- 11. MAINTAIN PROPER CLEARANCES PER ELECTRICAL CODE ON ALL VAV BOXES AND OTHER EQUIPMENT. COORDINATE WITH ALL TRADES TO ENSURE CLEARANCES ARE NOT
- 12. INSTALL ALL VAV BOXES BETWEEN 6 INCHES MINIMUM AND 24 INCHES MAXIMUM ABOVE CEILING.
- 13. FINAL LOCATION OF SPACE THERMOSTATS, HUMIDISTATS, AND SENSORS SHALL BE APPROVED BY ENGINEER.
- 14. INSTALL ALL WALL MOUNTED SENSORS IN EXISTING SENSOR LOCATIONS.
- 15. ALL ROUND BRANCH DUCTS TO DIFFUSERS SHALL MATCH NECK SIZES SHOWN ON SCHEDULE, UNLESS OTHERWISE NOTED.
- 16. ALL DIFFUSERS, GRILLES AND REGISTERS SHALL BE SIZED TO HAVE A MINIMUM FREE AREA OF 70% AND MEET PERFORMANCE CRITERIA SCHEDULED.

SCHEDULING NOTES:


1. DUE TO EXTENDED CHILLER LEAD TIMES, CHILLER REPLACEMENT AND ASSOCIATED WORK MAY BE COMPLETED IN THE WINTER PHASE. IF TIME ALLOWS FOR CHILLER TO BE INSTALLED DURING SUMMER CONSTRUCTION PERIOD, IT MAY BE DONE THEN AS WELL.

2. ALL OTHER WORK SHALL BE SCHEDULED FOR COMPLETION DURING THE SUMMER OF 2024.

ABBREVIATIONS

Ø	DIAMETER	°F	DEGREES FAHRENHEIT	OA	OUTSIDE AIR
Ø	OVAL	FD	FLOOR DRAIN	ΔΡ	PRESSURE DIFFERENTIAL
ADS	AIR/DIRT ELIMINATOR	FD	FIRE DAMPER		PUMP DESIGNATION
AFF	ABOVE FINISHED FLOOR	FLA	FULL LOAD AMPS	<u>P-x</u> (P)	EXISTING PUMP DESIGNATION
(AHU-x)	EXISTING AIR HANDLING UNIT DESIGNATION	GPM	GALLONS PER MINUTE	PD	PRESSURE DROP
AMP	AMPERE	Н	HUMIDISTAT	PH	PHASE
	BOILER DESIGNATION	H	HEIGHT	RA	RETURN AIR
B-x (B)	EXISTING BOILER DESIGNATION	HP	HORSEPOWER	(RE)	EXISTING ROOF EXHAUST HOOD DESIGNATION
(- / C-x	CHILLER DESIGNATION	(HWC)	EXISTING DUCT HOT WATER COIL DESIGNATION	RE-X	ROOF EXHAUST HOOD DESIGNATION
<u>C-x</u> (C)	EXISTING CHILLER DESIGNATION	HWC-X	DUCT HOT WATER COIL DESIGNATION	(RI)	EXISTING ROOF INTAKE HOOD DESIGNATION
CF	CHEMICAL FEEDER	HWR	HOT WATER RETURN	RG	REFRIGERANT GAS
CFM	CUBIC FEET PER MINUTE	HWS	HOT WATER SUPPLY	RL	REFRIGERANT LIQUID
CO	CARBON MONOXIDE	IN	INCH/INCHES	RPM	REVOLUTIONS PER MINUTE
CR	CONDENSER WATER RETURN	KEF-x	KITCHEN HOOD EXHAUST FAN DESIGNATION	SA	SUPPLY AIR
CS	CONDENSER WATER SUPPLY	(KEF)	EXISTING KITCHEN HOOD EXHAUST FAN DESIGNATION	SCCR	SHORT CIRCUIT CURRENT RATING
(CT)	EXISTING COOLING TOWER DESIGNATION	(KH-x)	EXISTING KITCHEN HOOD DESIGNATION	SD	SMOKE DETECTOR
CUH-x	CABINET UNIT HEATER DESIGNATION	KMAU-x	KITCHEN HOOD SUPPLY FAN DESIGNATION	SENS	SENSIBLE
(CUH)	EXISTING CABINET UNIT HEATER DESIGNATION	(KMAU)	EXISTING KITCHEN HOOD SUPPLY FAN DESIGNATION	SF	SQUARE FEET
CWR	CHILLED WATER RETURN	kAIC	KILO AMPS INTERRUPTING CAPACITY	T	THERMOSTAT OR TEMPERATURE SENSOR
CWS	CHILLED WATER SUPPLY	KW	KILOWATTS	TYP	TYPICAL
D	CONDENSATE DRAIN	LAT	LEAVING AIR TEMPERATURE	V	VOLTS
DB	DRY BULB	LBS	POUNDS	VAV-X.XX	VARIABLE AIR VOLUME BOX DESIGNATION
DDC	DIRECT DIGITAL CONTROLS	LWT	LEAVING WATER TEMPERATURE	(VB)	EXISTING VARIABLE AIR VOLUME BOX DESIGNATION
DN	DOWN	MAX	MAXIMUM	VD	VOLUME DAMPER
EA	EXHAUST AIR	MBH	1000 BRITISH THERMAL UNITS PER HOUR	VFD	VARIABLE FREQUENCY DRIVE
EAT	ENTERING AIR TEMPERATURE	MCA	MINIMUM CIRCUIT AMPS	W	WATTS
EF-x	EXHAUST FAN DESIGNATION	MIN	MINIMUM	W	WIDTH
(EF)	EXISTING EXHAUST FAN DESIGNATION	MOCP	MAXIMUM OVER CURRENT PROTECTION	WB	WET BULB
ÈSÉ	EXTERNAL STATIC PRESSURE	NC	NOISE CRITERIA	WC	WATER COLUMN
ET	EXPANSION TANK	NC	NORMALLY CLOSED	WPD	WATER PRESSURE DROP
EWT	ENTERING WATER TEMPERATURE	NO	NORMALLY OPEN		

LEGEND

CWR ← CHILLED WATER RETURN PIPING CWS — CHILLED WATER SUPPLY PIPING ← CR ← CONDENSER WATER RETURN PIPING CS CONDENSER WATER SUPPLY PIPING → D → DRAIN PIPING → EXISTING PIPING TO REMAIN $\leftarrow ----$ Existing Piping below or Hidden ← G GAS PIPING → HWR → HOT WATER RETURN PIPING → HWS → HOT WATER SUPPLY PIPING ── NEW PIPING ►---- PIPING TO BE REMOVED → RL → REFRIGERANT LIQUID PIPING ► RG REFRIGERANT GAS PIPING DIRECTION OF PITCH FOR PIPING OR DUCTWORK → PIPE SLEEVE ightarrow AUTOMATIC FLOW CONTROL VALVE TWO-WAY CONTROL VALVE → THREE-WAY CONTROL VALVE **AUTOMATIC AIR VENT** → DIFFERENTIAL PRESSURE SENSOR **⊢** BUTTERFLY VALVE → IPI BY BALANCING VALVE CHECK VALVE EXISTING GAS COCK ightarrow GAS PRESSURE REGULATOR → GAS SHUT-OFF VALVE EXISTING GATE VALVE GATE VALVE → PRESSURE RELIEF VALVE → HOSE BIBB

REVIN D. ALLEN

Lic. No. 023349

ر_ک 01-26-2024

Z

Ш

 \geq

HVAC CHOOLS

CHO

S(VS)

SE MIDDLI IEWPORT NE S S 4 A

M

AN ASBESTOS INSPECTION HAS NOT BEEN PERFORMED. ABESTOS-CONTAINING MATERIAL FOUND IN AREAS OF NEW CONSTRUCTION SHALL BE REMOVED PRIOR TO ANY OTHER WORK BEING PERFORMED. CONTACT NEWPORT NEWS PUBLIC SCHOOL SYSTEM UPON DISCOVERY OF ADDITIONAL AREAS CONTAINING ASBESTOS MATERIAL. ASBESTOS ABATEMENT SHALL BE HANDLED BY NEWPORT NEWS PUBLIC SCHOOL SYSTEM. PLEASE ALLOW A MINIMUM OF 3 DAYS TO COMPLETE ASBESTOS ABATEMENT.

ASBESTOS DISCLOSURE STATEMENT

LEAD PAINT PROVISION

NNPS'S UNDERSTANDING OF LEAD PAINT ISSUES WHICH MAY ARISE DURING THE PROJECT IS THAT PROPERLY TRAINED CONTRACTORS AND SUBCONTRACTORS SHOULD BE ABLE TO SAFELY PERFORM WORK EVEN IF LEAD PAINT MAY BE PRESENT AT SOME LOCATIONS. NNPS WILL PROVIDE TESTING FOR LEAD BASED PAINT USING AN X-RAY FLUORESCENCE (XRF) SPECTRUM ANALYZER. THE CONTRACTOR AND ITS SUB-CONTRACTORS SHALL CONDUCT ANY FURTHER TESTING NECESSARY TO BE IN COMPLIANCE WITH THE OSHA LEAD IN CONSTRUCTION STANDARD CONSISTENT WITH 29 CFR 1926.62. IT IS NOT CURRENTLY ANTICIPATED THAT THE WORK WILL REQUIRE APPLICATION OF THE EPA RENOVATE REPAIR AND PAINT (RRP) RULE FOR PRE-1978 CHILD OCCUPIED FACILITIES. HOWEVER, IF, FOLLOWING COMPLETION OF DESIGN, IT IS DETERMINED THAT THE SCOPE OF WORK AT ANY OF THE SITES WILL RESULT IN APPLICATION OF THE RRP RULE, THE CONTRACTOR AND ITS SUBCONTRACTORS WILL PROMPTLY COMPLY WITH THE REQUIREMENTS OF RRP WHERE SUCH REQUIREMENTS ARE APPLICABLE. NO PROHIBITED WORK PRACTICES, AS DEFINED IN RRP, WILL BE USED WHEN DISTURBING ANY PAINTED SURFACE WITH DETECTABLE LEAD USING AN XRF SPECTRUM ANALYZER AND THE OSHA LEAD IN CONSTRUCTION STANDARD SHALL APPLY. NNPS AND THE CONTRACTOR SHALL AGREE THAT THERE IS NO PRESENT BELIEF THAT THERE WILL BE A NEED TO ABATE LEAD PAINT DURING THE PROJECT, IF LEAD ABATEMENT BECOMES A REQUIREMENT, NNPS AND THE CONTRACTOR SHALL DETERMINE THE APPROPRIATE COURSE OF ACTION WHICH MAY INCLUDE ABATEMENT OR REMOVAL OF AN AREA FROM THE SCOPE OF SERVICES.

COMM NO **DESIGNED BY:** DRAWN BY: CHECKED BY:

DATE: 01/26/2024

22-113

KDA

	WATER COOLED CENTRIFUGAL CHILLER SCHEDULE																			
UNIT NO.	DESCRIPTION	CAPACITY (TONS)	GPM		DRATOR EWT (°F)	LVVT	GPM	ONDEN PD (FT)	ISER EWT (°F)	COMPRI QUANTITY	ESSOR TOTAL KW		ECTRIC MOCP		VOLTS	PH	SELECTION BASED ON "JOHNSON CONTROLS"	REFRIGERANT	OPERATING WEIGHT	REMARKS
C-1	WATER COOLED CENTRIFUGAL	450	972	27.0	57	44	1343	11.2	85.0	1	233.9	404	700	323.0	460	3	YZ_MA058AN045P078NA	R-1233ZD(E)	28276	12345678

REMARKS: 1 PROVIDE WITH 65 KAIC SCCR.

2 PROVIDE COMPRESSOR WITH VARIABLE SPEED DRIVE. 3 LISTED CAPACITY IS NET REFRIGERATION CAPACITY.

4 PROVIDE WITH 3-PASS EVAPORATOR AND 2-PASS CONDENSER CONFIGURATION.

5 PROVIDE WITH SINGLE POINT POWER CONNECTION. 6 PROVIDE WITH MANUFACTURER'S VIBRATION ISOLATION. 7 INSTALLATION OF NEW CHILLER WILL REQUIRE CONCRETE PAD EXTENSION. REFER TO NEW WORK NOTE 44 ON DRAWING M3.1 FOR

8 PROVIDE WITH INTEGRAL DISCONNECT SWITCH, REMOTE START, AND REMOTE STOP AND EMERGENCY STOP CAPABILITIES.

	ROOF EXHAUST HOOD SCHEDULE											
MARK	EQUIPMENT SERVED	ROOF OPENING	CFM	ESP (IN.)	UNIT WEIGHT (LBS.)	SELECTION BASED ON "GREENHECK"	REMARKS					
RE-1	EF-2	12" x 24"	1200	0.1	48	WRH-12x24	12					
RE-2	EF-6	12" x 24"	1200	0.1	48	WRH-12x24	12					
RE-3	EF-7	12" x 24"	1200 0.1 48 WRH-12x24				12					

REMARKS: 1 PROVIDE WITH BIRD SCREEN AND BACKDRAFT DAMPER. 2 PAINT EXHAUST HOOD TO MATCH ROOF COLOR.

					EX	HAUS	ST FA	N SCH	EDULE	<u> </u>						
UNIT NO.	TYPE	ARRANGEMENT	WHEEL	DRIVE	CFM	ESP (IN. WC)	FAN (RPM)	MAX. TIP SPEED	OUTLET VELOCITY FPM	MOTO HP	R DA	TA PH	CONTROL METHOD	MAX. SONES	SELECTION BASED ON "GREENHECK"	REMARKS
EF-1	INLINE	CENTRIFUGAL	BACKWARD INCLINED	DIRECT	1200	0.38	1140	3917	561	1/4	115	1	HOOD SWITCH	6.8	SQ-130	125
EF-2	INLINE	CENTRIFUGAL	BACKWARD INCLINED	DIRECT	1200	0.25	1140	3917	603	1/4	115	1	WALL SWITCH	7.1	SQ-130	12345
EF-3	ROOF MOUNTED	CENTRIFUGAL DOWNBLAST	BACKWARD INCLINED	DIRECT	1200	0.25	817	3128	909	1/4	115	1	WALL SWITCH	6.4	G-140-VG	12345689
EF-4	ROOF MOUNTED	CENTRIFUGAL DOWNBLAST	BACKWARD INCLINED	DIRECT	1200	0.25	817	3128	909	1/4	115	1	WALL SWITCH	6.4	G-140-VG	12345689
EF-5	ROOF MOUNTED	CENTRIFUGAL DOWNBLAST	BACKWARD INCLINED	DIRECT	1200	0.25	817	3128	909	1/4	115	1	WALL SWITCH	6.4	G-140-VG	12345689
EF-6	INLINE	CENTRIFUGAL	BACKWARD INCLINED	DIRECT	1200	0.25	1140	3917	603	1/4	115	1	WALL SWITCH	7.1	SQ-130	12345
EF-7	INLINE	CENTRIFUGAL	BACKWARD INCLINED	DIRECT	1200	0.25	1140	3917	603	1/4	115	1	WALL SWITCH	7.1	SQ-130	12345
EF-8	ROOF MOUNTED	CENTRIFUGAL DOWNBLAST	BACKWARD INCLINED	DIRECT	1200	0.25	817	3128	909	1/4	115	1	WALL SWITCH	6.4	G-140-VG	12345689
EF-9	ROOF MOUNTED	CENTRIFUGAL DOWNBLAST	BACKWARD INCLINED	DIRECT	1200	0.25	817	3128	909	1/4	115	1	WALL SWITCH	6.4	G-140-VG	12345689
EF-10	ROOF MOUNTED	CENTRIFUGAL DOWNBLAST	BACKWARD INCLINED	DIRECT	1200	0.25	817	3128	909	1/4	115	1	WALL SWITCH	6.4	G-140-VG	12345689
EF-11	ROOF MOUNTED	CENTRIFUGAL DOWNBLAST	BACKWARD INCLINED	DIRECT	650	0.25	1579	4495	929	1/10	115	1	WALL SWITCH	7.7	G-090-VG	12345689
EF-12	ROOF MOUNTED	CENTRIFUGAL DOWNBLAST	BACKWARD INCLINED	DIRECT	600	0.25	1495	4255	857	1/10	115	1	WALL SWITCH	6.9	G-090-VG	12345689
EF-13	ROOF MOUNTED	CENTRIFUGAL DOWNBLAST	BACKWARD INCLINED	DIRECT	1050	0.50	1725	5053	1112	1/4	115	1	THERMOSTAT	12.9	G-099-A	1567
EF-15	INLINE	CENTRIFUGAL	BACKWARD INCLINED	BELT	4000	0.38	855	4784	748	1	115	1	REFRIGERANT SENSOR	13.2	BSQ-200	15
EF-16	ROOF MOUNTED	CENTRIFUGAL DOWNBLAST	BACKWARD INCLINED	DIRECT	1200	0.25	817	3128	909	1/4	115	1	WALL SWITCH	6.4	G-140-VG	12345689

RKS:	1 REFER TO SPECIFICATIONS FOR ADDITIONAL REQUIREMENTS.
	DROVIDE AND INCTALL CWITCH IN EVICTING CWITCH LOCATION FOR

- (2) PROVIDE AND INSTALL SWITCH IN EXISTING SWITCH LOCATION FOR FAN
- 3 WALL SWITCH ON A 60-MINUTE TIMER.

BY SWITCH PER EXISTING UNIT CONTROLS.

MOUNT ON EXISTING KITCHEN EXHAUST/SUPPLY FAN COMBINED ROOF CURB WITH DUCT EXTENSION.

- 4) PROVIDE WITH BACKDRAFT DAMPER.
- 5 PROVIDE WITH FAN MOUNTED DISCONNECT SWITCH.
- 6 PROVIDE WITH CURB ADAPTER WHERE REQUIRED.
- 7 LINE VOLTAGE THERMOSTAT SET TO 95°F.

REMARKS	NO.	
25	P-1	
2345	P-2	
2345689	P - 3	
2345689	P-4	
2345689	P - 5	
2345	P-6	
2345	REMAR	RK
2345689		
2345689		
2345689		
2345689		
2345689		

(8)	PROVIDE W	/ITH EC MOTOR.

PROVIDE WITH SOLID STATE SPEED CONTROLLER.

CENTRIFUGAL, FORWARD CURVED GALVANIZED STEEL.

							ВО	ILER	SCH	HED	ULE				
UNIT NO.	DESCRIPTION		OUTPUT (MBH)	FUEL TYPE	GPM	LWT (°F)	INTAKE SIZE (INCHES)	EXHAUST SIZE (INCHES)	ELECT V	RICAL PH	SELECTION BASED ON "LOCHINVAR"	REMARKS			
B-1															
B-2	GAS FIRED CONDENSING BOILER	2500	2400	NATURAL GAS	152	140	8	9	208	3	FB-2501	1234			
REMA	ARKS: 1 PROVIDE WITH PVC INTAKE.					3	PROVIDE W	ITH COND	ENSATE	E DRAIN	N TRAP ASSEME	BLY AND NEUTRALIZATION TANK BY BOILER MANUFACTURER.			
	2 PROVIDE STAINLESS STEEL	"AL29-4	C" EXHA	JST FLUE.		4	PROVIDE W	ITH NEOP	RENE IS	SOLATIO	ON PADS.				

APPLICATIONS WITH GREASE-LADEN EXHAUST AIR.

4 VERIFY UNIT CONNECTION TO EXISTING FIRE SUPPRESSION SYSTEM.

				D	UC	ГΗЕ	ATI	NG	COIL	SCHEDULE				
				HOT WA	TER HE	EATING	COIL P	ERFORN	MANCE	SELECTION BASED				
UNIT NO.	CFM	EAT (°F)	LAT (°F)	CAPACITY TOTAL (MBH)	GPM	EWT (°F)	LWT (°F)	WPD (FT.)	SIZE H" x W"	ON "JOHNSON CONTROLS"	REMARKS			
HWC-1 6976 55.0 85.2 220.1 12.0 140.0 102.7 2.5 35" x 60" BDW LOOSE COIL 12														
HWC-2	353	55.0	80.1	9.6	0.5	140.0	100.9	0.2	12" x 12"	LOOSE BOOSTER COIL	12			
HWC-3	330	55.0	80.2	9.0	0.5	140.0	103.3	0.2	12" x 12"	LOOSE BOOSTER COIL	12			
HWC-4	230	55.0	82.6	6.9	0.5	140.0	112.0	0.2	9" x 9"	LOOSE BOOSTER COIL	12			
REMARKS:				DUCT FLANG ICT SIZE AS			ITION		2 UNIT	CONTROLLED BY DDC S	SYSTEM.			

					F	PUM	P S	СН	EDULE	
UNIT NO.	TYPE	SYSTEM	GPM	HEAD	- 10	MOTOR	DATA		SELECTION BASED ON	REMARKS
	DASE MOUNTED				HP	RPM	V	PH	"BELL & GOSSETT"	
P-1	BASE MOUNTED END SUCTION	HEATING HOT WATER	303	115	20	1750	460	3	E-1510-3E	73
P-2	BASE MOUNTED END SUCTION	HEATING HOT WATER (STANDBY)	303	115	20	1750	460	3	E-1510-3E	73
P-3	BASE MOUNTED END SUCTION	CHILLED WATER	972	135	40	1729	460	3	E-1510-4GC	123456
P-4	BASE MOUNTED END SUCTION	CHILLED WATER (STANDBY)	972	135	40	1729	460	3	E-1510-4GC	123456
P-5	BASE MOUNTED END SUCTION	CONDENSER WATER	704	115	40	1667	460	3	E-1510-4GC	124568
P-6	BASE MOUNTED END SUCTION	CONDENSER WATER	704	115	40	1667	460	3	E-1510-4GC	124568

RKS: 1 PROVIDE MATCHED SUCTION DIFFUSER BY PUMP MANUFACTURER.

- REFER TO SPECIFICATION SECTION 230900 FOR VFD REQUIREMENTS. EACH DRIVE SHALL HAVE A SEPARATE POWER CONNECTION BY DIVISION 26. REFER TO ELECTRICAL DRAWINGS FOR DETAILS.
- 3 PUMP VFD REPLACED IN A DIFFERENT PROJECT; WILL BE EXISTING TO REMAIN. PROVIDE WITH PREMIUM EFFICIENCY INVERTER DUTY MOTOR WITH AEGIS GROUNDING RING.
- 5 PROVIDE WITH FULL SIZE IMPELLER.
- 6 INSTALL PUMP ON EXISTING PUMP PACKAGE FRAME AND GROUT TO CONCRETE PAD. 7 PUMP IS EXISTING TO REMAIN. PERFORMANCE FOR INFORMATION PURPOSES ONLY BASED ON EXISTING UNIT SUBMITTALS AND NEW EQUIPMENT HOT WATER FLOW REQUIREMENTS.
- 8 PUMP SIZED FOR FULL COOLING TOWER FLOW REQUIREMENTS PER EXISTING DRAWINGS (1408 GPM TOTAL). CHILLER CONDENSER SELECTED AT 1343 GPM TOTAL.

MARK	UNIT CONFIGURATION	CFM HI/LOW		EATING EAT (°F)	G EWT (°F)	GPM	WPD (FT.)		TOR DA		SELECTION BASED ON "AIREDALE"	REMARKS
CUH-1	FLOOR MOUNTED CABINET	638/491	35.8/ 29.4	70.0	140.0	3.0	1.4	1/4	115	1	FC 006	123
CUH-2	FLOOR MOUNTED CABINET	638/491	35.8/ 29.4	70.0	140.0	3.0	1.4	1/4	115	1	FC 006	123
CUH-3	FLOOR MOUNTED CABINET	638/491	35.8/ 29.4	70.0	140.0	3.0	1.4	1/4	115	1	FC 006	123
CUH-4	FLOOR MOUNTED CABINET	638/491	35.8/ 29.4	70.0	140.0	3.0	1.4	1/4	115	1	FC 006	123
REMARKS:	1) PROVIDE WITH 24 VOLT CONTRO 2) PROVIDE WITH UNIT MOUNTED A					CH.			WITH F ORIES (DRY MOUNTED PIPING PA LETE.	CKAGE AND

								KIT	СН	EN	HOC	DD AN	ID MAKEUP A	AIR U	NIT :	SCHE	EDU	LE								
	HOC	D DATA				Е	XHAUST	FAN DATA					SELECTION					SUPPLY	FAN DATA						SELECTION BASED ON	DEMARKS
MARK	SIZE	DESCRIPTION	MARK	CFM	DRIVE	ESP	RPM ⁻	TIP SPEED	HP	MCA	MOCP \	OLTS PH	BASED ON "GREENHECK"	MARK	CFM	DRIVE	ESP	RPM	TIP SPEED	HP	MCA	MOCF	VOLT	SPH	"GREENHECK"	REMARKS
KEH-1	14'0" X 6'0"	EXISTING HOOD TO REMAIN	KEF-1	4900	BELT	1.25	1013	6498	2	4.4	15	460 3	CUBE-240HP-VGD	KMAU-1	2550	BELT	0.5	785	2468	1	2.6	15	460	3	SAF-112	12345
KEH-2	14'0" X 6'0"	EXISTING HOOD TO REMAIN	KEF-2	4900	BELT	0.9	999	6410	2	4.4	15	460 3	CUBE-220HP-VGD	KMAU-2	2550	BELT	0.5	785	2468	1	2.6	15	460	3	SAF-112	12345
REMA		ST FAN AND SUPPLY FAN SHAL STING KITCHEN HOOD SYSTEM				(_	AUST FAN S ABLE FOR I						,					LY ISOLATED LUMINUM. SUI					3		

COMM. NO: DESIGNED BY: DRAWN BY: CHECKED BY:

M0.2

ACEMEN⁻ RE PASSAGE MIDDLE SCHOOL HVAC

MARY

SLS KDA

ALTH OA
Jan-D. Ollie
Lic. No. 023349
STONAL ENGINE

onsulting

HVAC F

REPLACEMEN

PASSAGE MIDDLE SCHOOL
NEWPORT NEWS PUBLIC S

MARY

		A	IR	HA	NDL	INC	3 L	JNI	TS	CH	IED	UL	E (F	OR I	NTE	RNAI		OMP	ONEN	TR	REF	PLAC	EΝ	1EN	IT A	ND B	ALANC	CINC	PL	JRP	OSE	S)			
		SUPPLY	FAN					RFT	URN/F	ХНА	UST FA	NI.				CHILLED	WATER	R COOLIN	IG COIL PE	RFOR	MANC	CE	į	·			HOT WATE	R REH	EAT CO	IL PERF	ORMAN	ICE			
1			17.01		1				011117	-/(1 1/ (COIL		CITY	E	AT	LAT	,	APD	EW	r LW1	r WPD	05.4	MIN F.A.	CAPACITY TOTAL	EAT	LAT	APD	0514	EWT	LWT	WPD	REMARKS
AL M	ESP (IN.)	QTY H	IP VC	OLTS	PH FAI	N CF	FM	ESP	QTY	HP	VOLTS	PH	FAN RPM	ROWS	TOTAL (MBH)	SENS (MBH)	DB(°F)	WB(°F)	DB(°F) WI	B(°F)	(IN.)	GPM EW (°F	(°F)	(FT)	CFM	(SF)	(MBH)	DB(°F)	DB(°F)	(IN.)	GPM	(FT.)	(°F)	(FT.)	
75	4.0	2 2	25 4	460	3 179	1	-	-	-	-	-	-	-	8	2208.0	1271.5	88.2	73.0	49.3 4	8.5	0.83	342 44.0	56.8	3 11.1	26605	81.0	790.6	32.0	57.6	0.26	50	140	110	0.7	12346
	-	-	-	-		189	950	1.5	1	15	460	3	916	-	=	ı	-	-	-	-	-		-	ı	-	-	-	ı	ı	ı	-	ı	ı	ı	1234
15	4.0	2 2	25 4	460	3 116	2	-	-	-	-	-	-	-	8	1483.0	874.0	85.4	71.7	55.0 5	55.0	1.0	223 44.0	57.3	9.4	27015	50.6	825	41.9	69.4	0.26	30	140	85	0.4	12346
	-	-	-	-		133	300	1.5	1	10	460	3	1144	-	=	•	-	-	-	-	-	- -	-	-	-	-	-	•	-	•	-	ı	•	ı	1234
20	0.5	2	5 4	460	3 136	1 71	20	0.6	1	3	460	3	1381	10	511.2	218.1	87.2	72.7	55.2 5	55.2	1.49	72 44.0	58.2	5.7	7120	16.5	225	36.9	65.1	0.03	9	140	90	0.4	12346
'5	0.5	1 1	0 4	460	3 95	7	-	-	-	_	-	-	-	5	438.0	281.9	83.4	70.6	55.3 5	55.3	0.76	60 44.0	58.6	3.7	9275	20.3	240	47.3	70.4	0.03	12	140	100	0.9	1234
10	0.5	2 7	.5 4	460	3 119	1 86	640	0.25	1	5	460	3	1144	12	632.2	272.4	84.2	71.1	55.0 5	55.0	1.38	109 44.0	55.6	8.1	8640	20.3	220	45.0	67.8	0.03	11	140	100	0.9	12346
:5	2.5	2 7	.5 4	460	3 178	9 75	525	0.1	1	2	460	3	722	8	406.4	237.7	84.5	71.2	55.2 5	55.2	1.26	64 44.0	56.7	7.0	7525	14.6	180	42.0	63.5	0.12	6	140	80	0.1	12346

REMARKS: (1) UNIT CASING EXISTING TO REMAIN. PROVIDE AND INSTALL REPLACEMENTS IN KIND OF ALL SUPPLY AND EXHAUST FANS, ALL UNIT COILS, ALL CONTROL DAMPERS AND ACTUATORS, ALL COIL PIPING PACKAGES, AND FILTERS. PROVIDE SUPPLY FANS, "GREENHECK" MODEL QEI OR APPROVED EQUAL.
WHERE VERTICAL CENTRIFUGAL BARRY BLOWERS ARE INSTALLED EXISTING.

ONLY ON THE FOLLOWING TEMPERATURES:
AMBIENT SUMMER - 95°F DB/78°F WB, WINTER - 15°F DB/14°F WB.

460

2 SCHEDULE INFORMATION PROVIDED FOR THE PERFORMANCE REQUIREMENTS OF INTERNAL COMPONENTS TO BE REPLACED AND BALANCING PURPOSES ONLY.

3 922 5260

PRIOR TO ORDERING. ALL NEW COMPONENTS SHALL FIT IN EXISTING UNIT CASING.

RETURN SUMMER - 76°F DB/66°F WB, WINTER - 68°F DB/54°F WB.

87.2 72.7

82.4 70.1

148.8

12

7.5 460

83.2

55.1 | 55.1 | 1.41 | 24 | 44.0 | 56.4 | 5.8 | 2820 |

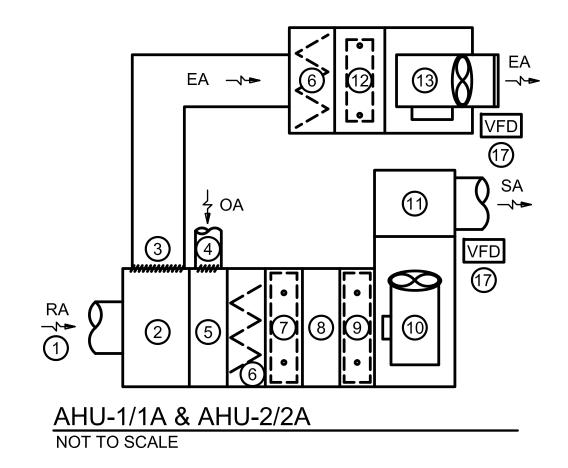
3 CONTRACTOR TO FIELD VERIFY DIMENSIONS OF ALL EXISTING AND NEW COMPONENTS 5 SUPPLY FANS REPLACED IN 2023. SUPPLY FANS ARE EXISTING TO REMAIN. "GREENHECK" MODEL QEI-15.

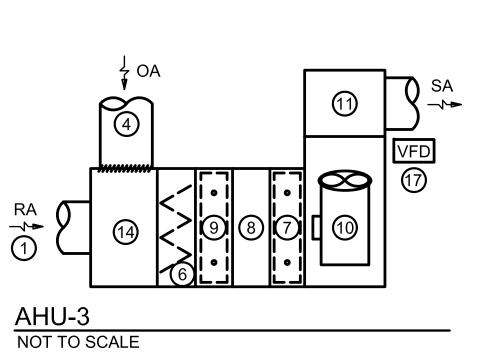
36.8 65.3 0.05 9.5

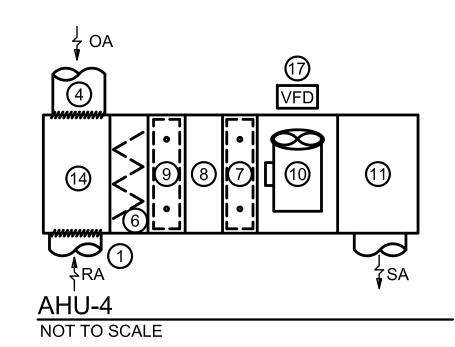
50.0 71.4 0.04

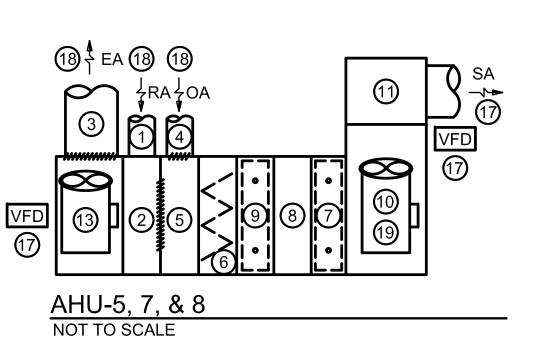
67.5

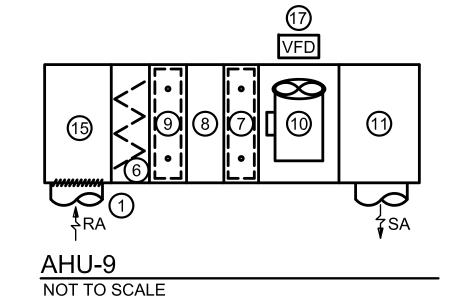
5.5

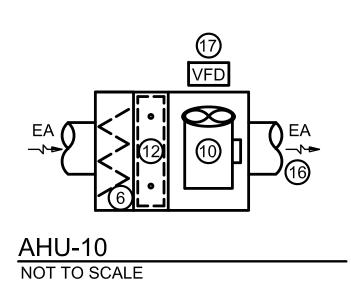

(5) WHERE "GREENHECK" MODEL QEI-15 OR APPROVED EQUAL SUPPLY FANS ARE INSTALLED, PROVIDE AND INSTALL NEW FLEXIBLE CONNECTIONS BETWEEN FAN AND SUPPLY AIR PLENUM SECTION. NO SPECIALTY MOUNTING EQUIPMENT IS REQUIRED. REUSE EXISTING FAN BASE AND ISOLATION SPRINGS.


140


1234


0.2


95



MODEL QEI-15.

AHU COMPONENTS

UNIT TOTAL

AHU-1A 18950

AHU-2A 13300 |

AHU-9 2820

NO. CFM CFM TOTAL

AHU-1 30575 18950 30575

AHU-2 27015 13300 27015

AHU-3 7120 4180 7120

AHU-4 9275 3615 9275

AHU-5 8640 3750 8640

8200 0.75

2820 0.35

AHU-7 7525 3690

- 1 PROVIDE AND INSTALL NEW RETURN AIR DAMPERS AND ACTUATORS.
- 2 RETURN/EXHAUST AIR SECTION.
- 3 PROVIDE AND INSTALL NEW EXHAUST AIR DAMPERS AND ACTUATORS.

4 PROVIDE AND INSTALL NEW OUTDOOR AIR

- INTAKE DAMPERS AND ACTUATORS. 5 OUTDOOR AIR SECTION. PROVIDE AND INSTALL NEW OUTDOOR AIRFLOW
- MONITORS.
- 6 PROVIDE AND INSTALL NEW FILTERS IN FILTER RACK SECTION.
- 7) PROVIDE AND INSTALL NEW HOT WATER COIL AND ACCESSORIES COMPLETE. REFER TO SCHEDULE FOR PERFORMANCE REQUIREMENTS.

- 8 ACCESS SECTIONS.
- 9 PROVIDE AND INSTALL NEW CHILLED WATER COIL AND ACCESSORIES COMPLETE. REFER TO SCHEDULE FOR PERFORMANCE REQUIREMENTS.
- 10 PROVIDE AND INSTALL NEW SUPPLY FANS, "GREENHECK" MODEL QEI OR APPROVED EQUAL. REFER TO SCHEDULE FOR PERFORMANCE REQUIREMENTS AND QUANTITY. REMOVAL OF FANS REQUIRES REMOVAL OF UNIT PANEL.
- (1) SUPPLY AIR DISCHARGE PLENUM.
- (12) RUNAROUND LOOP COIL TO BE REMOVED
- 13 PROVIDE AND INSTALL NEW EXHAUST FAN, "GREENHECK" MODEL QEI OR APPROVED EQUAL. REFER TO SCHEDULE FOR PERFORMANCE REQUIREMENTS AND QUANTITY. REMOVAL OF FANS REQUIRES REMOVAL OF UNIT PANEL.
- (14) MIXING BOX SECTION.
- (15) RETURN AIR SECTION.
- (6) EXHAUST THROUGH BUILDING LOUVER.
- 17 NEW FAN VARIABLE FREQUENCY DRIVE PROVIDED BY CONTROLS CONTRACTOR.
- (18) REFER TO DRAWINGS FOR DUCTWORK CONNECTION LOCATIONS.
- 19 AHU-8 SUPPLY FANS REPLACED 2023. WILL BE EXISTING TO REMAIN. "GREENHECK"

DESIGNED BY: CHECKED BY:

					SE	RIE	S FA	N P	OWER	ED \	/AV	BOX :	SCHE	DULI	<u> </u>		
	INL	_ET VAL		F	AN DAT	Α		OT WAT	ER HEATING	COIL DA	TA	МОТО	R DATA	NC	NC	SELECTION	
UNIT NO.	MAX. CFM	MIN. CFM	SIZE (IN.)	SIZE	CFM	ESP	EAT (°F)	LAT (°F)	CAPACITY (MBH)	WPD (°F)	GPM	VOLTS	HP	RAD	DISCH.	BASED ON "GREENHECK"	REMARKS
VAV-1.01	355	300	8	8	495	0.35	61.7	82.4	11.1	0.01	1.0	277	1/3	30	20	XG-FCI	0236
VAV-1.02	570	560	8	8	800	0.35	60.7	94.6	29.3	0.11	1.5	277	1/3	30	22	XG-FCI	0235
VAV-1.03	1140	960	12	12	1600	0.35	61.7	90.5	49.7	0.34	2.5	277	1	40	31	XG-FCI	10234
VAV-1.04	725	615	10	10	1020	0.35	61.7	90.6	31.8	0.11	1.5	277	1/3	34	27	XG-FCI	1235
VAV-1.05	760	645	10	10	1070	0.35	61.7	88.8	31.3	0.11	1.5	277	1/3	33	26	XG-FCI	1235
VAV-1.06	1015	860	10	10	1430	0.35	61.7	95.3	51.8	0.24	2.5	277	1	40	31	XG-FCI	1235
VAV-1.07	860	725	10	10	1210	0.35	61.7	92.2	39.8	0.20	2.0	277	1	39	29	XG-FCI	1235
VAV-1.08	930	930	10	10	1160	0.35	59.6	83.7	30.2	0.11	1.5	277	1/3	30	22	XG-FCI	1235
VAV-1.09	685	575	10	10	960	0.35	61.7	102.5	42.3	0.16	1.5	277	1	30	22	XG-FCI	1235
VAV-1.10	845	710	10	10	1185	0.35	61.7	92.5	39.3	0.20	2.0	277	1	32	25	XG-FCI	1236
VAV-1.11	570	480	8	8	800	0.35	61.7	95.5	29.2	0.11	1.5	277	1/3	28	18	XG-FCI	1235
VAV-1.12	625	530	8	8	880	0.35	61.7	92.4	29.2	0.11	1.5	277	1/3	30	19	XG-FCI	1235
VAV-1.13	875	875	8	8	970	0.35	58.6	88.3	31.1	0.11	1.5	277	1/3	26	18	XG-FCI	1235
VAV-1.14	220	185	6	6	310	0.35	61.8	93.4	10.6	0.01	0.5	277	1/3	30	18	XG-FCI	1234
VAV-1.15	320	315	8	8	450	0.35	60.7	83.3	11.0	0.01	1.0	277	1/3	28	19	XG-FCI	1235
VAV-1.16	345	290	8	8	480	0.35	61.7	96.6	18.1	0.07	1.0	277	1/3	26	18	XG-FCI	1235
VAV-1.17	380	320	8	8	530	0.35	61.7	82.0	11.6	0.01	1.0	277	1/3	30	18	XG-FCI	1235
VAV-1.18	400	335	8	8	560	0.35	61.8	96.8	21.2	0.05	1.0	277	1/3	28	19	XG-FCI	1235
VAV-1.19	200	170	4	4	280	0.35	61.7	92.1	9.2	0.01	0.5	277	1/3	28	18	XG-FCI	1234
VAV-1.20	975	820	10	10	1370	0.35	61.8	95.9	50.6	0.24	2.5	277	1	40	31	XG-FCI	1235
VAV-1.21	940	790	10	10	1320	0.35	61.8	96.3	49.2	0.24	2.5	277	1	40	31	XG-FCI	
			6		330							277	1/3	29	18		10000
VAV-1.22	235	200		6		0.35	61.7	92.5	11.0	0.01	0.5					XG-FCI	10000
VAV-1.23	570	560	8	8	800	0.35	60.7	94.5	29.2	0.11	1.5	277	1/3	30	22	XG-FCI	10000
VAV-1.24	715	715	8	8	840	0.35	59.1	92.0	29.8	0.11	1.5	277	1/3	31	23	XG-FCI	10000
VAV-1.25	555	470	8	8	780	0.35	61.7	96.3	29.1	0.11	1.5	277	1/3	30	22	XG-FCI	10000
VAV-1.26	690	690	8	8	860	0.35	59.6	92.0	30.1	0.11	1.5	277	1/3	31	23	XG-FCI	1235
VAV-1.27	655	555	8	8	920	0.35	61.7	92.3	30.4	0.11	1.5	277	1/3	32	24	XG-FCI	1235
VAV-1.28	555	470	8	8	780	0.35	61.7	96.1	29.0	0.11	1.5	277	1/3	30	22	XG-FCI	1235
VAV-1.29	585	495	8	8	820	0.35	61.7	94.9	29.4	0.11	1.5	277	1/3	30	22	XG-FCI	1235
VAV-1.30	585	495	8	8	820	0.35	61.7	94.9	29.4	0.11	1.5	277	1/3	30	22	XG-FCI	1235
VAV-1.31	615	515	8	8	860	0.35	61.7	93.3	29.3	0.11	1.5	277	1/3	30	22	XG-FCI	10235
VAV-1.32	605	510	8	8	850	0.35	61.7	94.2	29.8	0.11	1.5	277	1/3	31	23	XG-FCI	10235
VAV-1.33	555	470	8	8	780	0.35	61.7	96.1	29.0	0.11	1.5	277	1/3	30	22	XG-FCI	10235
VAV-1.34	220	185	6	6	310	0.35	61.8	93.7	10.7	0.01	0.5	277	1/3	28	18	XG-FCI	1234
VAV-1.35	785	660	10	10	1100	0.35	61.7	88.2	31.4	0.11	1.5	277	1/3	33	26	XG-FCI	1235
VAV-1.36	420	355	8	8	590	0.35	61.7	95.5	21.5	0.05	1.0	277	1/3	28	20	XG-FCI	1235
VAV-1.37	600	505	8	8	840	0.35	61.7	94.6	29.8	0.11	1.5	277	1/3	31	23	XG-FCI	1235
VAV-1.38	600	505	8	8	840	0.35	61.7	94.6	29.8	0.11	1.5	277	1/3	31	23	XG-FCI	1235
VAV-1.39	620	525	8	8	870	0.35	61.7	93.9	30.2	0.11	1.5	277	1/3	32	24	XG-FCI	1235
VAV-1.40	570	480	8	8	800	0.35	61.7	95.5	29.2	0.11	1.5	277	1/3	30	22	XG-FCI	1235
VAV-1.41	570	480	8	8	800	0.35	61.7	95.5	29.2	0.11	1.5	277	1/3	30	22	XG-FCI	1235
VAV-1.42	115	100	4	4	160	0.35	61.5	97.9	6.3	0.02	0.5	277	1/3	26	16	XG-FCI	1235
VAV-1.43	795	670	10	10	1115	0.35	61.7	97.2	42.7	0.16	2.0	277	1	40	31	XG-FCI	1235
VAV-1.44	570	480	8	8	800	0.35	61.7	95.5	29.2	0.11	1.5	277	1/3	30	22	XG-FCI	1235
VAV-1.45	500	420	8	8	700	0.35	61.7	87.9	19.8	0.05	1.0	277	1/3	33	20	XG-FCI	1235
VAV-1.46	570	480	8	8	800	0.35	61.7	95.6	29.3	0.11	1.5	277	1/3	30	22	XG-FCI	1235
VAV-1.47	700	700	8	8	820	0.35	59.1	92.5	29.6	0.11	1.5	277	1/3	30	22	XG-FCI	1235
VAV-1.48	1120	945	12	12	1575		61.7	96.1	58.4	0.11		277	1/3	40	31	XG-FCI	
						0.35					3.5		1				10000
VAV-1.49	1165	980	12	12	1635	0.35	61.7	95.3	59.2	0.35	3.0 × MOUN	277 TED TOC		40	31 (F) DE	XG-FCI	10235 BOW HEATING COIL
REMARKS:			//IIH 1" //ITH EC		CED INS	OLATIO	٧.	<u> </u>	ROVIDE WITH			IED IOG(PLE DISCO	ININECT.	_	ROVIDE WITH 3-	ROW HEATING COIL.

					SE	ERIE	SFA	AN F	OWER	ED \	/AV	BOX	SCHE	EDULI	=		
	INI	LET VAL	VE		FAN DAT	Ā	Н	IOT WAT	ER HEATING	COIL DA	TA	MOTO	R DATA	NC	NC	SELECTION	
UNIT NO.	MAX. CFM	MIN. CFM	SIZE (IN.)	SIZE	CFM	ESP	EAT (°F)	LAT (°F)	CAPACITY (MBH)	WPD (°F)	GPM	VOLTS	HP	RAD	DISCH.	BASED ON "GREENHECK"	REMARKS
VAV-6.01	350	245	6	6	350	0.35	63.7	90.49	10.7	0.03	1.0	277	1/3	25	18	XG-FCI	1235
VAV-6.02	675	475	8	8	675	0.35	63.7	104.7	20.9	0.05	1.0	277	1/3	26	19	XG-FCI	1235
VAV-6.03	730	510	8	8	730	0.35	63.7	104.4	28.3	0.11	1.5	277	1/3	29	21	XG-FCI	1235
VAV-6.04	300	170	6	6	300	0.35	63.7	103.7	9.1	0.01	0.5	277	1/3	26	18	XG-FCI	1234
VAV-6.05	400	285	6	6	400	0.35	63.7	102.9	15.0	0.06	1.0	277	1/3	30	18	XG-FCI	1235
VAV-6.06	560	400	6	6	560	0.35	63.7	90.1	11.1	0.01	1.0	277	1/3	30	20	XG-FCI	1235
VAV-6.07	560	400	6	6	560	0.35	63.7	104.0	18.4	0.07	1.0	277	1/3	26	18	XG-FCI	1235
VAV-6.08	300	215	6	6	300	0.35	63.7	100.7	7.11	0.02	0.5	277	1/3	26	16	XG-FCI	1236

4 PROVIDE WITH 2-ROW HEATING COIL.

REMARKS: 1 PROVIDE WITH 1" FOIL FACED INSULATION. 3 PROVIDE WITH FACTORY MOUNTED TOGGLE DISCONNECT. 5 PROVIDE WITH 3-ROW HEATING COIL. 2 PROVIDE WITH EC MOTOR.

2 PROVIDE WITH EC MOTOR.

4 PROVIDE WITH 2-ROW HEATING COIL.

6 PROVIDE WITH 4-ROW HEATING COIL.

6 PROVIDE WITH 4-ROW HEATING COIL.

					SE	RIE	S FA	AN F	OWER	ED \	/AV	вох	SCHE	DULI	E		
	INI	LET VAL		ſ	FAN DAT	Α		OT WAT	ER HEATING		TA	МОТО	R DATA	NC	NC	SELECTION	
UNIT NO.	MAX. CFM	MIN. CFM	SIZE (IN.)	SIZE	CFM	ESP	EAT (°F)	LAT (°F)	CAPACITY (MBH)	WPD (°F)	GPM	VOLTS	HP	RAD	DISCH.	BASED ON "GREENHECK"	REMARKS
VAV-2.01	820	540	8	8	820	0.35	63.7	101.0	29.9	0.11	1.5	277	1/3	31	23	XG-FCI	1235
VAV-2.02	780	515	8	8	780	0.35	63.7	102.4	29.3	0.11	1.5	277	1/3	30	22	XG-FCI	1236
VAV-2.03	780	515	8	8	780	0.35	63.7	102.4	29.3	0.11	1.5	277	1/3	30	22	XG-FCI	10236
VAV-2.04	780	515	8	8	780	0.35	63.7	102.9	29.0	0.11	1.5	277	1/3	30	22	XG-FCI	10236
VAV-2.05	780	515	8	8	780	0.35	63.7	102.9	29.0	0.11	1.5	277	1/3	30	22	XG-FCI	10236
VAV-2.06	780	550	8	8	780	0.35	63.7	102.9	29.0	0.11	1.5	277	1/3	30	22	XG-FCI	10236
VAV-2.07	780	515	8	8	780	0.35	63.7	102.9	29.0	0.11	1.5	277	1/3	30	22	XG-FCI	10236
VAV-2.08	400	260	6	6	400	0.35	63.7	93.5	11.6	0.01	1.0	277	1/3	30	19	XG-FCI	10236
VAV-2.09	920	600	8	8	920	0.35	63.7	99.3	30.7	0.11	1.5	277	1/3	32	24	XG-FCI	1235
VAV-2.10	175	115	4	4	175	0.35	63.7	104.8	6.4	0.02	0.5	277	1/3	26	16	XG-FCI	1235
VAV-2.11	780	515	8	8	780	0.35	63.7	102.8	29.1	0.11	1.5	277	1/3	30	22	XG-FCI	1236
VAV-2.12	780	515	8	8	780	0.35	63.7	102.4	29.3	0.11	1.5	277	1/3	30	22	XG-FCI	1236
VAV-2.13	950	630	8	8	950	0.35	63.7	99.8	30.4	0.11	1.5	277	1/3	32	24	XG-FCI	1235
VAV-2.14	780	515	8	8	780	0.35	63.7	102.6	29.2	0.11	1.5	277	1/3	30	22	XG-FCI	0236
VAV-2.15	780	515	8	8	780	0.35	63.7	101.8	29.5	0.11	1.5	277	1/3	30	22	XG-FCI	1236
VAV-2.16	380	255	6	6	380	0.35	63.7	101.2	10.6	0.01	0.5	277	1/3	28	18	XG-FCI	1235
VAV-2.17	360	230	6	6	360	0.35	63.7	101.2	10.6	0.01	0.5	277	1/3	28	18	XG-FCI	1235
VAV-2.18	780	515	8	8	780	0.35	63.7	102.9	29.0	0.11	1.5	277	1/3	30	22	XG-FCI	1236
VAV-2.19	840	555	8	8	840	0.35	63.7	102.9	29.0	0.11	1.5	277	1/3	30	22	XG-FCI	1236
VAV-2.20	820	540	8	8	820	0.35	63.7	101.3	29.8	0.11	1.5	277	1/3	31	23	XG-FCI	1235
VAV-2.21	800	530	8	8	800	0.35	63.7	101.9	29.5	0.11	1.5	277	1/3	30	22	XG-FCI	1235
VAV-2.22	800	530	8	8	800	0.35	63.7	101.9	29.5	0.11	1.5	277	1/3	30	22	XG-FCI	1235
VAV-2.23	780	515	8	8	780	0.35	63.7	101.9	29.5	0.11	1.5	277	1/3	30	22	XG-FCI	1235
VAV-2.24	780	515	8	8	780	0.35	63.7	102.9	29.0	0.11	1.5	277	1/3	30	22	XG-FCI	1236
VAV-2.25	820	700	8	8	820	0.35	63.7	101.7	29.6	0.11	1.5	277	1/3	30	22	XG-FCI	1235
VAV-2.26	780	515	8	8	780	0.35	63.7	102.9	29.0	0.11	1.5	277	1/3	30	22	XG-FCI	1236
VAV-2.27	175	115	4	4	175	0.35	63.7	103.6	6.6	0.02	0.5	277	1/3	26	16	XG-FCI	1235
VAV-2.28	1175	770	8	8	1175	0.35	63.7	100.9	30.0	0.11	1.5	277	1/3	31	23	XG-FCI	1235
VAV-2.29	820	540	8	8	820	0.35	63.7	101.2	29.8	0.11	1.5	277	1/3	31	23	XG-FCI	1235
VAV-2.30	800	525	8	8	800	0.35	63.7	101.3	29.8	0.11	1.5	277	1/3	31	23	XG-FCI	1235
VAV-2.31	940	620	8	8	940	0.35	63.7	98.3	31.1	0.11	1.5	277	1/3	32	25	XG-FCI	1235
VAV-2.32	820	540	8	8	820	0.35	63.7	101.2	29.8	0.11	1.5	277	1/3	31	23	XG-FCI	1235
VAV-2.33	780	515	8	8	780	0.35	63.7	102.6	29.2	0.11	1.5	277	1/3	30	22	XG-FCI	1236
VAV-2.34	450	290	6	6	450	0.35	63.7	90.5	10.7	0.03	1.0	277	1/3	25	18	XG-FCI	1235
VAV-2.35	450	290	6	6	450	0.35	63.7	90.5	10.7	0.03	1.0	277	1/3	25	18	XG-FCI	1235
VAV-2.36	780	515	8	8	780	0.35	63.7	102.9	29.0	0.11	1.5	277	1/3	30	22	XG-FCI	0236
VAV-2.37	820	540	8	8	820	0.35	63.7	101.4	29.7	0.11	1.5	277	1/3	31	23	XG-FCI	1235
REMARKS:		ROVIDE \	MITH 1"	FOIL FA	CED INS				ROVIDE WITH			ITED TOG	GLE DISCO	NNECT.	(5) PF	ROVIDE WITH 3-	ROW HEATING COIL.
	<u> </u>		WITH EC					<u> </u>	ROVIDE WITH:						~		ROW HEATING COIL.

(2) PROVIDE WITH EC MOTOR.

2 PROVIDE WITH EC MOTOR.

(4) PROVIDE WITH 2-ROW HEATING COIL.

(6) PROVIDE WITH 4-ROW HEATING COIL.

6 PROVIDE WITH 4-ROW HEATING COIL.

					SE	RIE	S F/	AN P	OWER	ED \	/AV	вох :	SCHE	DULI	E		
	IN	LET VAL	_	F	FAN DAT	Ά	Н	OT WAT	ER HEATING (COIL DA	TA	MOTOF	R DATA	NC	NC	SELECTION	
UNIT NO.	MAX. CFM	MIN. CFM	SIZE (IN.)	SIZE	CFM	ESP	EAT (°F)	LAT (°F)	CAPACITY (MBH)	WPD (FT)	GPM	VOLTS	HP	RAD	DISCH.	BASED ON "GREENHECK"	REMARKS
VAV-7.01	955	600	8	8	955	0.35	63.7	100.4	30.2	0.11	1.5	277	1/3	32	24	XG-FCI	1235
VAV-7.02	680	535	8	8	680	0.35	63.7	103.1	29.0	0.11	1.5	277	1/3	30	22	XG-FCI	1236
VAV-7.03	1320	1250	10	10	1320	0.35	63.7	102.2	51.8	0.24	2.0	277	1	40	31	XG-FCI	1235
VAV-7.04	640	535	8	8	640	0.35	63.7	103.1	29.0	0.11	1.5	277	1/3	30	22	XG-FCI	1236
VAV-7.05	1515	835	12	12	1515	0.35	63.7	102.7	58.4	0.35	2.5	277	1	40	31	XG-FCI	1235
VAV-7.06	1805	995	12	12	1805	0.35	63.7	101.9	59.2	0.35	3.0	277	1	40	31	XG-FCI	1235
VAV-7.07	300	220	6	6	300	0.35	63.7	105.0	18.1	0.07	0.5	277	1/3	26	18	XG-FCI	1235
REMARKS:	1 PR	ROVIDE /	WITH 1"	FOIL FA	CED INS	SULATIO	N.	3 PF	ROVIDE WITH I	FACTOR	Y MOUN	ITED TOG	GLE DISCO	DNNECT.	⑤ PF	ROVIDE WITH 3-	-ROW HEATING COIL.

4 PROVIDE WITH 2-ROW HEATING COIL.

PASSAGE MIDDLE SCHOOL HVAC REPLACEMEN NEWPORT NEWS PUBLIC SCHOOLS

MARY

COMM. NO: DESIGNED BY: DRAWN BY: CHECKED BY:

© COPYRIGHT THOMPSON CONSULTING ENGINEERS

item Area Item Popul	ation	As Ps	sqft people	45212.2 924.30		Condition An Method to d	•			Heating Appendix A								AHŲ-1 \	/ENTILAT	TION CALC	ULATIO
cupant Divi corrected (outdoor air intake	sum of Pz D Vou	people cfm	1 1		*	liation Efficienc	•		1 1 1 14 173										Based on V	MC 2018 - 4
tem prima erage outd	ry airflow oor air fraction	Vps Xs	cfm	0.51			ntake flow requ ntake flow prov			18950			42075	30.0%							
A	В	С	D	E	F	G	Н	1	J	K	L	M	N	0	Р	Q	R	S	Т	U	
/AV Box lumber	Room Name	Occupancy Categor	y Area	Default Population	Zone Population	People Outdoor Air Rate	Area Outdoo Air Rate	Breathing	Area Breathing Zone Airflow	Breathing Zone Airflow	Zone Air Distribution Effectiveness	Zone Outdoor Airflow	Zone Discharge Airflow	Zone Primary Airflow	Primary Outdoor Air Fraction	Zone Secondary Recirculation Fraction	Zone Primary Air Fraction	Supply Air Fraction	Mixed Air Fraction	Outdoor Air Fraction	Zone Ventilatio Efficiency
			Az	Ves/No	Pz people	Rp cfm/person	Ra cfm/sqft	Pz * Rp cfm	Az * Ra cfm	Vbz cfm	Ez	Voz cfm	Vdz cfm	Vpz cfm	Zpz	Er	Ер	Fa	Ер	Fc	Evz
1.01	CENTER STAIRS	CORRIDOR	sqft 1888.5	Yes/No Yes	0.0	0	0.06	0.00	113.31	. 113.31	0.8	141.64	495	297	0.48	1.00	_0.60	1.00	0.60	1.00	1.02
1.02 1.03	620 621	CLASSROOM 9+ CLASSROOM 9+	798.8 611.2	Yes Yes	28.4	10 10	0.12	283.92	9¶ 97.34	381.26	8.0 8.0	4 4/6.58	800 1600	560 960	0.50	1.00 1.00	I '0.60	1.00	II U.60	1.00	1.01
1.04	206	CLASSROOM 9+	545.7	Yes	19.1	10	0.12	191.00	65.48	256.48	8.0	320.60	1020	512	0.52	1.00	0.60	1.00	0.60	1.00	0.99
1.05	207 208A	CLASSROOM 9+ STORAGE	660 107.3	Yes Yes	23.1 0.0	10 0	0.12 0.12	231.00 0.00	79.20 12.88	310.20 12.88	8.0 8.0	387.75 16.10	880 190	528 114	0.73 0.14	1.00 1.00	0.60 0.60	1.00 1.00	0.60 0.60	1.00 1.00	0.87 1.22
1.06	208	CLASSROOM 9+	978.8	Yes	34.3	10	0.12	342.58	117.46	460.04	0.8	575.05	1430	358	0.67	1.00	0.60	1.00	0.60	1.00	0.90
1.07	209 209A	Metal Shop STORAGE	590.9 88.9	Yes	11.8 0.0	10	0.18 0.12	118.18 0.00	106.36 10.67	224.54 10.67	8.0 8.0	280.68 13.34	1160	596 30	0.40 0.44	1.00	0.60	1.00 1.00	0.60 0.60	1.00 1.00	1.07 1.04
1.08	210	COMPUTER LAB	1426.8	Yes Yes	35.7	10	0.12	356.70	171.22	527.92	0.8	659.90	50 1000	800	0.44	1.00 1.00	0.60 0.80	1.00	0.80	1.00	0.75
	210A	STORAGE	106.8	Yes	0.0	0	0.12	0.00	12.82	12.82	8.0	16.02	160	128	0.13	1.00	0.80	1.00	0.80	1.00	1.30
1.09	200M CORRIDORS	STORAGE Corridor	24 2814.5	Yes Yes	0.0 0.0	0	0.12 0.06	0.00 0.00	2.88 168.87	2.88 168.87	8.0 8.0	3.60 211.09	50 810	30 486	0.12 0.43	1.00 1.00	0.60 0.60	1.00 1.00	0.60 0.60	1.00 1.00	1.23 1.05
	200-M - MENS RESTROOM	CORRIDOR	192.9	Yes	0.0	0	0.06	0.00	11.57	11.57	0.8	14.47	50	30	0.48	1.00	0.60	1.00	0.60	1.00	1.02
1.10	200-W - WOMENS RESTROOM 211	CORRIDOR CLASSROOM 9+	160 50 9 .7	Yes Yes	0.0 17.8	0 10	0.06 0.12	0.00 178.40	9.60 61.16	9.60 239.56	8.0 8.0	12.00 299.45	50 800	30 480	0.40 0.62	1.00 1.00	0.60 0.60	1.00 1.00	0.60 0.60	1.00 1.00	1.07 0.93
1.10	TOILET-1	CORRIDOR	112	Yes	0.0	0	0.06	0.00	6.72	6.72	0.8	8.40	100	60	0.02	1.00	0.60	1.00	0.60	1.00	1.22
	211A	BREAK ROOM	163.7	Yes	0.8	5	0.06	4.09	9.82	13.91	0.8	17.39	285	171	0.10	1.00	0.60	1.00	0.60	1.00	1.25
1.11 1.12	212 213	CLASSROOM 9+ CLASSROOM 9+	695.2 600.2	Yes Yes	24.3 21.0	10 10	0.12 0.12	243.32 210.07	83.42 72.02	326.74 282.09	0.8 0.8	408.43 352.62	800 880	480 528	0.85 0.67	1.00 1.00	0.60 0.60	1.00 1.00	0.60 0.60	1.00 1.00	0.80 0.90
1.13	214	CLASSROOM 9+	1139.1	Yes	39.9	10	0.12	398.69	136.69	535.38	8.0	669.22	920	830	0.81	1.00	0.90	1.00	0.90	1.00	0.73
1.14	214B 214A	STORAGE OFFICE	88.5 296.1	Yes Yes	0.0	0 5	0.12	0.00 7.40	10.62	10.62	8.0 8.0	13.28	50 190	45 114	0.30	1.00	0.90	1.00	0.90	1.00	1.19 1.14
1.14	214D	STORAGE	206.8	Yes	1.5 0.0	0	0.06 0.12	0.00	17.77 24.82	25.17 24.82	0.8	31.46 31.02	120	72	0.28 0.43	1.00 1.00	0.60 0.60	1.00 1.00	0.60 0.60	1.00 1.00	1.14
1.15	215	CLASSROOM 9+	228.5	Yes	8.0	10	0.12	79.98	27.42	107.40	8.0	134.24	225	158	0.85	1.00	0.70	1.00	0.70	1.00	0.76
1.16	216 217	CLASSROOM 9+ CLASSROOM 9+	209.2 454.5	Yes Yes	7.3 15.9	10 10	0.12 0.12	73.22 159.08	25.10 5 4.54	98.32 213.62	0.8 0.8	122.91 267.02	225 480	158 ;288	0.78 0.93	1.00 1.00	0.70 0.60	1.00 1.00	0.70 0.60	1.00 1.00	0.81 0.75
1.17	CORRIDOR	CORRIDOR	483. 9	Yes	0.0	0	0.06	0.00	29.03	29.03	0.8	36.29	530	318	0.11	1.00	0.60	1.00	0.60	1.00	1.24
1.18	303 302	BREAKOUT ROOM OFFICE	1 309.7 215.1	Yes Yes	9.3 1.1	7.5 5	0.06 0.06	69.68 5.38	18.58 12.91	88.26 18.28	0.8	110.33 22.85	560 280	336 168	0.33 0.14	1.00 1.00	0.60 0.60	1.00 1.00	0.60 0.60	1.00 1.00	1.11 1.22
1.20	304	STORAGE	145.2	Yes	0.0	0	0.12	0.00	17.42	17.42	8.0 8.0	21.78	50	30	0.73	1.00	0.60	1.00	0.60	1.00	0.87
	1/2 OF LIBRARY	LIBRARY	1647.2	Yes	16.5	5	0.12	82.36	197.66	280.02	8.0	350.03	1320	792	0.44	1.00	0.60	1.00	0.60	1.00	1.04
1.21 1.22	1/2 OF LIBRARY 301	LIBRARY BREAK ROOM	1647.2 458.5	Yes Yes	16.5 2.3	5 5	0.12 0.06	82.36 11.46	197.66 27.51	280.02 38.97	8.0 8.0	350.03 48.72	1320 330	792 198	0.44 0.25	1.00 1.00	0.60 0.60	1.00 1.00	0.60 0.60	1.00 1.00	1.04 1.16
1.23	601	CLASSROOM 9+	798.7	Yes	28.0	10	0.12	279.55	95.84	375.39	0.8	469.24	800	560	0.84	1.00	0.70	1.00	0.70	1.00	0.77
1.24	701	SCIENCE LAB	1047	Yes	27.0	10	0.18	270.00	188.46	458.46	8.0	573.08	840	714	0.80	1.00	0.85	1.00	0.85	1.00	0.75
1.25 1.26	702 703	CLASSROOM 9+ SCIENCE LAB	678.3 1063.1	Yes Yes	23.7 26.6	10 10	0.12 0.18	237.41 265.78	81.40 191.36	318.80 457.13	8.0 8.0	398.50 571.42	780 860	468 688	0.85 0.83	1.00 1.00	0.60 0.80	1.00 1.00	0.60 0.80	1.00 1.00	0.80 0.74
1.27	704	CLASSROOM 9+	683.3	Yes	23.9	10	0.12	239.16	82.00	321.15	8.0	401.44	920	552	0.73	1.00	0.60	1.00	0.60	1.00	0.87
1.28 1.29	705 706	CLASSROOM 9+ CLASSROOM 9+	680.3 682.1	Yes Yes	23.8 23.9	10 10	0.12 0.12	238.11 238.74	81.64 81.85	319.74 320.59	0.8 0.8	399.68 400.73	780 820	468 492	0.85 0.81	1.00 1.00	0.60 0.60	1.00 1.00	0.60 0.60	1.00 1.00	0.80 0.82
1.30	707	CLASSROOM 9+	680.4	Yes	23.8	10	0.12	238.14	81.65	319.79	0.8	399.74	820	492	0.81	1.00	0.60	1.00	0.60	1.00	0.82
1.31 1.32	708	CLASSROOM 9+ CLASSROOM 9+	694.2	Yes	24.3	10	0.12	242.97	83.30	326.27	8.0	407.84	860	516	0.79	1.00	0.60	1.00	0.60	1.00	0.83
1.52	709 709A	STORAGE	702.5 88.4	Yes Yes	24.6 0.0	10 0	0.12 0.12	245.88 0.00	84.30 10.61	330.18 10.61	8.0 8.0	412.72 13.26	800 50	480 30	0.86 0.44	1.00 1.00	0.60 0.60	1.00 1.00	0.60 0.60	1.00 1.00	0.79 1.04
1.33	710	SCIENCE LAB	826.4	Yes	20.7	10	0.18	206.60	148.75	355.35	8.0	444.19	780	468	0.95	1.00	0.60	1.00	0.60	1.00	0.74
1.34 1.35	712 700-M - MENS RESTROOM	BREAKOUT ROOM CORRIDOR	308.1 221.9	Yes Yes	9.2 0.0	7.5 0	0.06 0.06	69.32 0.00	18.49 13.31	87.81 13.31	0.8 0.8	109.76 16.64	310 50	186 30	0.59 0.55	1.00 1.00	0.60 0.60	1.00 1.00	0.60 0.60	1.00 1.00	0.95 0.98
	700-W - WOMENS RESTROOM	CORRIDOR	20 9 .7	Yes	0.0	0	0.06	0.00	12.58	12.58	0.8	15.73	50	30	0.52	1.00	0.60	1.00	0.60	1.00	0.99
	718 SR-10 - SINGLE RESTROOM	OFFICE CORRIDOR	157.2	Yes	0.8	5	0.06	3.93	9.43	13.36	0.8	16.70	100	60	0.28	1.00	0.60	1.00	0.60	1.00	1.14
	CORRIDORS	CORRIDOR	50 2770.7	Yes Yes	0.0 0.0	0	0.06 0.06	0.00 0.00	3.00 166.24	3.00 166.24	8.0 8.0	3.75 207.80	50 850	30 510	0.13 0.41	1.00 1.00	0.60 0.60	1.00 1.00	0.60 0.60	1.00 1.00	1.23 1.06
1.36	711	BREAK ROOM	642. <mark>8</mark>	Yes	3.2	5	0.06	16.07	38.57	54.64	0.8	68.30	590	354	0.19	1.00	0.60	1.00	0.60	1.00	1.19
1.37 1.38	713 714	CLASSROOM 9+ CLASSROOM 9+	768.6 752.2	Yes Yes	26.9 26.3	10 10	0.12 0.12	269.01 263.27	92.23 90.26	361.24 353.53	0.8 0.8	451.55 441.92	840 840	504 504	0.90 0.88	1.00 1.00	0.60 0.60	1.00 1.00	0.60 0.60	1.00 1.00	0.77 0.78
1.39	715	CLASSROOM 9+	755.9	Yes	26.5	10	0.12	264.57	90.71	355.27	0.8	444.09	820	49 2	0.90	1.00	0.60	1.00	0.60	1.00	0.77
1.40	715A 716	STORAGE	88.6 682.5	Yes	0.0	0 10	0.12	0.00	10.63	10.63	0.8	13.29 400.97	50 800	30	0.44	1.00	0.60	1.00	0.60	1.00	1.04
1.40 1.41	716 717	CLASSROOM 9+ CLASSROOM 9+	696.9	Yes Yes	23.9 24.4	10	0.12 0.12	238.88 243.92	81.90 83.63	320.78 327.54	8.0 8.0	400.97	800 800	480 480	0.84 0.85	1.00 1.00	0.60 0.60	1.00 1.00	0.60 0.60	1.00 1.00	0.80 0.80
1.42	719	OFFICE	145.9	Yes	0.7	5	0.06	3.65	8.75	12.40	8.0	15.50	160	96	0.16	1.00	0.60	1.00	0.60	1.00	1.21
1.43	CORRIDOR CORRIDOR	CORRIDOR CORRIDOR	753.7 753.2	Yes Yes	0.0 0.0	0	0.06 0.06	0.00 0.00	45.22 45.19	45.22 45.19	8.0 8.0	56.53 56.49	420 420	252 252	0.22 0.22	1.00 1.00	0.60 0.60	1.00 1.00	0.60 0.60	1.00 1.00	1.17 1.17
	CENTER STAIRS	CORRIDOR	753.2 1160	yes Yes	0.0	0	0.06	0.00	69.60	69.60	0.8	87.00	275	165	0.22	1.00	0.60	1.00	0.60	1.00	0.99
1.44	720	CLASSROOM 9+	700.6	Yes	24.5	10	0.12	245.21	84.07	329.28	0.8	411.60	800	480	0.86	1.00	0.60	1.00	0.60	1.00	0.79
1.45 1.46	821 820	CLASSROOM 9+ CLASSROOM 9+	465.1 697.6	Yes Yes	16.3 24.4	10 10	0.12 0.12	162.79 244.16	55.81 83.71	218.60 327.87	8.0 8.0	273.25 409.84	700 800	420 480	0.65 0.85	1.00 1.00	0.60 0.60	1.00 1.00	0.60 0.60	1.00 1.00	0.92 0.80
1.47	801	SCIENCE LAB	1052.6	Yes	26.3	10	0.18	263.15	189.47	452.62	8.0	565.77	820	697	0.81	1.00	0.85	1.00	0.85	1.00	0.75
1.48 1.49	823 721	CLASSROOM 9+ CLASSROOM 9+	817.6 795.5	Yes Yes	28.6 27.8	10 10	0.12 0.12	286.16 278.43	98.11 95.46	384.27 373.89	8.0 8.0	480.34 467.36	1575 1535	945 921	0.51 0.51	1.00 1.00	0.60 0.60	1.00 1.00	0.60 0.60	1.00 1.00	1.00 1.00
1.40	721 822	BREAK ROOM	795.5 335.2	res Yes	27.8 1.7	10	0.12	278.43 8.38	20.11	373.89 28.49	0.8	467.36 35.62	100	60	0.51	1.00	0.60	1.00	0.60	1.00	0.95

ystem Area		As	sqft	30690.8		Condition Ana	•			Heating								AHU-2 \	/ENTIL AT	ION CALC	ULATIO
lystem Population		Ps sum of Pz	people people	710.00 710.00		Method to de Minimum Evz				Appendix A 0.78								Allo-L	, Eldii iii e	Based on V	
ccupant Divers	F : -	D	heobie	1.00		Critical Zone				2.25 - 803										Daseu OII V	AIC ZOID -
Incorrected out	•	Vou	cfm	10398.62		System Ventil	ation Efficienc	γ		0.78											
ystem primary		Vps	cfm	17981		Outdoor air in				13255											
verage outdoo	air fraction	Xs		0.57		Outdoor air in	take now prov	vided		13300			27015	30.0%							
A	В	С	D	E	F	G	Н	ı	J	К	Ĺ	M	N	0	Р	Q	R	S	Т	U	V
VAV Box Number	Zone Name	Occupancy Category	Area	Default Population	Zone Population	People Outdoor Air Rate	Area Outdoor Air Rate	Occupancy Breathing Zone Airflow	Area Breathing Zone Airflow	Breathing Zone Airflow	Zone Air Distribution Effectiveness	Zone Outdoor Airflow	Zone Discharge Airflow	Zone Primary Airflow	Primary Outdoor Air Fraction	Zone Second Recirculation Fraction	Zone Primary	Supply Air Fraction	Mixed Air Fraction	Outdoor Air Fraction	Zone Ventilatio Efficienc
			Az sqft	Yes/No	Pz	Rp cfm/person	Ra cfm/sqft	Pz * Rp cfm	Az * Ra cfm	Vbz cfm	Ez	Voz cfm	Vdz cfm	Vpz cfm	Zpz	Er	Ер	Fa	Ер	Fc	E∀z
			•	•	people												_			_	
2.01	608	CLASSROOM 9+	694.2	Yes	25.0	10	0.12	250.00	83.30	333.30	0.8	416.63	820	540	0.77	1.00	0.66	1.00	0.65	1.00	0.86
2.02 2.03	607 60 6	CLASSROOM 9+ CLASSROOM 9+	680.1	Yes Yes	24.0	1 0 10	0.12	240.00	81.61	321.61	0.8	402.02	780	515 616	0.78	1.00	0.66	1.00	0.66	1.00	0.86
2.03 2.04	605	CLASSROOM 9+	682.1 680.3	Yes Yes	24.0 24.0	10	0.12 0.12	240.00 240.00	81.85 81.64	321.85 321.64	8.0 8.0	402.32 402.05	780 780	515 515	0.78 0.78	1.00 1.00	0.66 0.66	1.00 1.00	0.66 0.66	1.00 1.00	0.86 0.86
2.05	604	CLASSROOM 9+	681.7	Yes	24.0	10	0.12	240.00	81.80	321.80	0.8	402.05	780	515 515	0.78	1.00	0.66	1.00	0.66	1.00	0.86
2.06	603	SCIENCE LAB	863.4	Yes	22.0	10	0.12	220.00	155.41	375.41	0.8	469.27	780	550	0.85	1.00	0.71	1.00	0.70	1.00	0.80
2.07	602	SCIENCE LAB	794.8	Yes	20.0	10	0.18	200.00	143.06	343.06	0.8	428.83	780	515	0.83	1.00	0.66	1.00	0.66	1.00	0.83
2.08	SIDE ENTRANCE	CORRIDOR	564.1	Yes	0.0	0	0.06	0.00	33.85	33.85	0.8	42.31	400	260	0.16	1.00	0.65	1.00	0.65	1.00	1.27
2.09	600-W - RESTROOM	CORRIDOR	201.2	Yes	0.0	0	0.06	0.00	12.07	12.07	0.8	15.09	50	33	0.46	1.00	0.65	1.00	0.65	1.00	1.07
	60D-M - RESTROOM	CORRIDOR	203.3	Yes	0.0	0	0.06	0.00	12.20	12.20	8.0	15.25	50	33	0.47	1.00	0.65	1.00	0.65	1.00	1.06
	CORRIDORS	CORRIDOR	2968,2	Yes	0.0	0	0.06	0.00	178.09	178.09	8.0	222.62	555	362	0.62	1.00	0.65	1.00	0.65	1.00	0.97
	SR-9 SINGLE RESTROOM	CORRIDOR	50.1	Yes	0.0	0	0.06	0.00	3.01	3.01	0.8	3.76	50	33	0.12	1.00	0.65	1.00	0.65	1.00	1.29
	618	OFFICE	191.3	Yes	1.0	5	0.06	5.00	11.48	16.48	8.0	20.60	215	140	0.15	1.00	0.65	1.00	0.65	1.00	1.27
2.10	619 647	OFFICE	145	Yes	1.0	5	0.06	5.00	8.70	13.70	8.0	17.13	175	115	0.15	1.00	0.66	1.00	0.65	1.00	1.27
2.11 2.12	617 616	CLASSROOM 9+ CLASSROOM 9+	695.7 682	Yes	25.0	10 10	0.12	250.00	83.48	333.48	0.8 0.8	416.86	780	515 515	0.81	1.00	0.66	1.00	0.66	1.00	0.84
2.12	615	CLASSROOM 9+	752.8	Yes Yes	24.0 27.0	10 10	0.12 0.12	240.00 270.00	81.84 90.34	321.84 360.34	0.8	402.30 450.42	780 860	570	0.78 0.79	1.00 1.00	0.66 0.66	1.00 1.00	0.66 0.66	1.00 1.00	0.86 0.85
2.13	615A	STORAGE	88.6	Yes	0.0	0	0.12	0.00	10.63	10.63	0.8	13.29	90	60	0.73	1.00	0.67	1.00	0.66	1.00	1.23
2.14	614	CLASSROOM 9+	694.3	Yes	25.0	10	0.12	250.00	83.32	333.32	0.8	416.65	780	515	0.81	1.00	0.66	1.00	0.66	1.00	0.84
2.15	613	SCIENCE LAB	827.3	Yes	21.0	10	0.18	210.00	148.91	358.91	0.8	448.64	780	515	0.87	1.00	0.66	1.00	0.66	1.00	0.80
2.16	612	BREAKOUT ROOM	307.6	Yes	10.0	7.5	0.06	75.00	18.46	93.46	0.8	116.82	380	251	0.47	1.00	0.66	1.00	0.66	1.00	1.07
2.17	611	BREAK ROOM	648.5	Yes	4.0	5	0.06	20.00	38.91	58.91	0.8	73.64	360	230	0.32	1.00	0.64	1.00	0.63	1.00	1.15
2.18	610	SCIENCE LAB	826.1	Yes	21.0	10	0.18	210.00	148.70	358.70	0.8	448.37	780	515	0.87	1.00	0.66	1.00	0.66	1.00	0.80
2.19	609	CLASSROOM 9+	683.9	Yes	24.0	10	0.12	240.00	82.07	322.07	8.0	402.59	780	515	0.78	1.00	0.66	1.00	0.66	1.00	0.86
	609A	STORAGE	88.6	Yes	0.0	0	0.12	0.00	10.63	10.63	8.0	13.29	60	40	0.34	1.00	0.66	1.00	0.66	1.00	1.15
2.20	808	CLASSROOM 9+	694.8	Yes	25.0	10	0.12	250.00	83.38	333.38	8.0	416.72	820	540	0.77	1.00	0.66	1.00	0.65	1.00	0.86
2.21	807	CLASSROOM 9+	680.1	Yes	24.0	10	0.12	240.00	81.61	321.61	8.0	402.02	800	530	0.76	1.00	0.66	1.00	0.66	1.00	0.87
2,22	806	CLASSROOM 9+	679.7	Yes	24.0	10	0.12	240.00	81.56	321.56	8.0	401.96	800	530	0.76	1.00	0.66	1.00	0.66	1.00	0.87
2.23	805	CLASSROOM 9+	680.3 687.4	Yes	24.0	10	0.12	240.00	81.64	321.64	8.0	402.05	780	515	0.78	1.00	0.66	1.00	0.66	1.00	0.86
2.24 2.25	804 803	CLASSROOM 9+ SCIENCE LAB	1062.3	Yes Yes	25.0 27.0	10 10	0.12 0.18	250.00 270.00	82.49 191.21	332.49 461.21	0.8 0.8	415.61 576.52	780 820	515 700	0.81 0.82	1.00 1.00	0.66 0.85	1.00 1.00	0.66 0.85	1.00 1.00	0.84 0.78
2.26	802	CLASSROOM 9+	679.8	Yes	24.0	10	0.13	240.00	81.58	321.58	0.8	401.97	780	515	0.78	1.00	0.66	1.00	0.66	1.00	0.78
2.27	819	OFFICE	145.9	Yes	1.0	5	0.06	5.00	8.75	13.75	0.8	17.19	175	115	0.15	1.00	0.66	1.00	0.65	1.00	1.27
	-W - WOMENS RESTROOM		216.2	Yes	0.0	6	0.06	0.00	12.97	12.97	0.8	16.22	50	33	0.50	1.00	0.66	1.00	0.65	1.00	1.04
	00-M - MENS RESTROOM	CORRIDOR	216.4	Yes	0.0	o	0.06	0.00	12.98	12.98	8.0	16.23	50	33	0.50	1.00	0.66	1.00	0.65	1.00	1.04
	818	OFFICE	157.5	Yes	1.0	5	0.06	5.00	9.45	14.45	0.8	18.06	175	115	0.16	1.00	0.66	1.00	0.65	1.00	1.27
	CORRIDORS	CORRIDOR	2746.3	Yes	0.0	þ	0.06	0.00	164.78	164.78	8.0	205.97	850	557	0.37	1.00	0.66	1.00	0.65	1.00	1.13
	R-11 - SINGLE RESTROOM	CORRIDOR	49.9	Yes	0.0	0	0.06	0.00	2.99	2.99	8.0	3.74	50	32	0.12	1.00	0.64	1.00	0.64	1.00	1.29
2.29	817	CLASSROOM 9+	696.5	Yes	25.0	10	0.12	250.00	83.58	333.58	8.0	416.98	820	540	0.77	1.00	0.66	1.00	0.65	1.00	0.86
2.30	816	CLASSROOM 9+	682.1 366.0	Yes	24.0	10	0.12	240.00	81.85	321.85	0.8	402.32	800	525	0.77	1.00	0.66	1.00	0.65	1.00	0.87
2.31	815 815	CLASSROOM 9+	755.3	Yes	27.0	10	0.12	270.00	90.64	360.64	0.8	450.80	840	554 66	0.81	1.00	0.66	1.00	0.66	1.00	0.84
222	815A 814	STORAGE CLASSROOM 9+	88.6 752.1	Yes	0.0 27.0	0 10	0.12	0.00 270.00	10.63	10.63	8.0 8.0	13.29	100	66 540	0.20	1.00	0.66 0.66	1.00	0.66	1.00	1.24 0.82
2.32 2.33	813	CLASSROOM 9+	752.1 768.7	Yes Yes	27.0 27.0	10 10	0.12 0.12	270.00	90.25 92.24	360.25 362.24	0.8	450.32 452.81	820 780	540 515	0.83 0.88	1.00 1.00	0.66	1.00 1.00	0.65 0.66	1.00 1.00	0.82
2.35 2.34	812	BREAKOUT ROOM	310.4	Yes	10.0	7.5	0.12	75.00	18.62	93.62	0.8	117.03	450	290	0.40	1.00	0.64	1.00	0.64	1.00	1.11
2.35	811	BREAK ROOM	648.9	Yes	4.0	5	0.06	20.00	38.93	58.93	0.8	73.67	450	290	0.45	1.00	0.64	1.00	0.64	1.00	1.20
2.36	810	SCIENCE LAB	825.6	Yes	21.0	10	0.18	210.00	148.61	358.61	0.8	448.26	780	515	0.23	1.00	0.66	1.00	0.66	1.00	0.80
2.37	809	CLASSROOM 9+	682.2	Yes	24.0	10	0.12	240.00	81.86	321.86	0.8	402.33	760	500	0.80	1.00	0.66	1.00	0.65	1.00	0.84
	809A	STORAGE	88.6	Yes	0.0	0	0.12	0.00	10.63	10.63	0.8	13.29	60	40	0.34	1.00	0.66	1.00	0.65	1.00	1.15

AHU-2 VENTILATION CALCULATION - IAQ PROCEDURE

											AHU-3	VENTILAT		ULATION MC 2018 - 403
Α	В	С	D	E	F	G	Н	I	J	K	L	М	N	0
System Number	System Name	Condition Analyzed	Occupancy Category	Area	Default Population	Zone Population	People Outdoor Air Rate	Area Outdoor Air Rate	Breathing	Area Breathing Zone Airflow	Breathing Zone Airflow	Zone Air Distribution Effectiveness	Zone Outdoor Airflow	Outdoor Air Intake Flow Provided
				Az		Pz	Rp	Ra	Pz * Rp	Az * Ra	Vbz	Ez	Voz	
				sqft	Yes/No	people	cfm/person	cfm/sqft	cfm	cfm	cfm		cfm	cfm
AHU-3 AHU-3	GYMNASIUM 502	Heating Heating	Gym STORAGE	7950 310	No Yes	270.00 0.00	1 1	0.1 0.12	0.00	431 37.20	37.20	1 0.8	46.50	
												TOTAL:	4177.50	4180

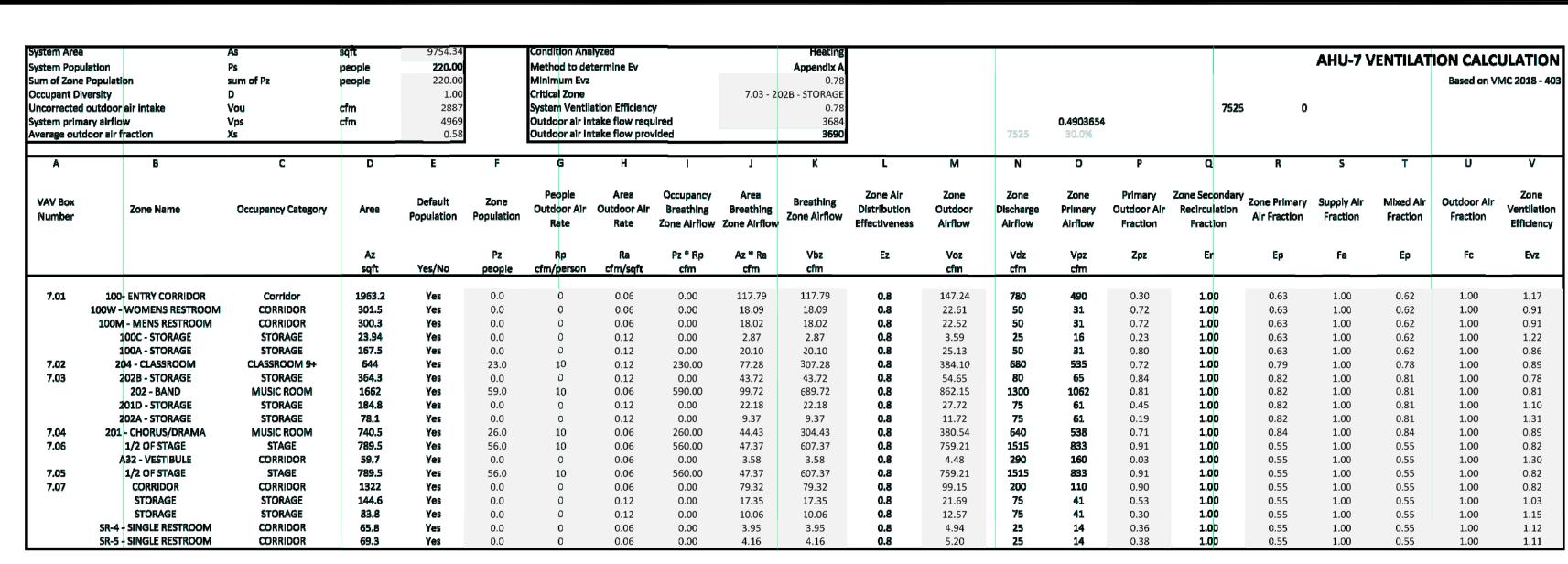
AHU-3 VENTILATION CALCULATION - IAQ PROCEDURE

									AHU-4	VENTILAT	ION CALC	ULATION	Based on V	/MC 2018 - 403
Α	В	С	D	E	F	G	Н	ı	J	K	L	М	N	0
System Number	System Name	Condition Analyzed	Occupancy Category	Area	Default Population	Zone Population	People Outdoor Air Rate	Area Outdoor Air Rate	Occupancy Breathing Zone Airflow	Area Breathing Zone Airflow	Breathing Zone Airflow	Zone Air Distribution Effectiveness	Zone Outdoor Airflow	Outdoor Air Intake Flow Provided
				Az	Mar. 161 a	Pz	Rp	Ra	Pz * Rp	Az * Ra	Vbz	Ez	Voz	
				sqft	Yes/No	people	cfm/person	cfm/sqft	cfm	cfm	cfm		cfm	cfm
AHU-4	RECEIVING/ENTRY	Heating	RECEIVING	337.2	Yes	0.00	0	0.12	0.00	40.46	40.46	0.8	50.58	
AHU-4	SERVICE LINES	Heating	CAFETERIA	892.1	Yes	90.00	7.5	0.18	675.00	160.58	835.58	0.8	1044.47	
AHU-4	404 - KITCHEN	Heating	KITCHEN	1273.5	Yes	26.00	7.5	0.12	195.00	152.82	347.82	0.8	434.78	
AHU-4	404A	Heating	STORAGE	75.2	Yes	0.00	0	0.12	0.00	9.02	9.02	0.8	11.28	
AHU-4	404C	Heating	STORAGE	81.2	Yes	0.00	0	0.12	0.00	9.74	9.74	0.8	12.18	
AHU-4	404D	Heating	STORAGE	155.7	Yes	0.00	0	0.12	0.00	18.68	18.68	0.8	23.36	
AHU-4	403A	Heating	STORAGE	135.2	Yes	0.00	0	0.12	0.00	16.22	16.22	0.8	20.28	
AHU-4	403	Heating	STORAGE	134.3	Yes	0.00	0	0.12	0.00	16.12	16.12	0.8	20.15	
AHU-4	SR-6 - SINGLE RESTROOM	Heating	CORRIDOR	46.1	Yes	0.00	0	0.06	0.00	2.77	2.77	0.8	3.46	
AHU-4	SR-7 - SINGLE RESTROOM	Heating	CORRIDOR	55.5	Yes	0.00	0	0.06	0.00	3.33	3.33	0.8	4.16	
AHU-4	SR-8 - SINGLE RESTROOM	Heating	CORRIDOR	55.5	Yes	0.00	0	0.06	0.00	3.33	3.33	0.8	4.16	
AHU-4	OFFICE	Heating	OFFICE	194	Yes	1.00	5	0.06	5.00	11.64	16.64	0.8	20.80	
AHU-4	CORRIDORS	Heating	CORRIDOR	293.5	Yes	0.00	0	0.06	0.00	17.61	17.61	0.8	22.01	
AHU-4	STORAGE	Heating	STORAGE	56.5	Yes	0.00	0	0.12	0.00	6.78	6.78	0.8	8.48	
												TOTAL:	1680.15	3615

AHU-4 VENTILATION CALCULATION - IAQ PROCEDURE

												AHU-5	VENTILAT		ULATION MC 2018 - 403
	Α	В	С	D	Ē	F	G	Н	I	1	K	L	М	N	0
	System Number	System Na	Condition ame Analyzed	Occupancy Category	Area	Default Population	Zone Population	People Outdoor Air Rate	Area Outdoor Air Rate	Breathing	Area Breathing Zone Airflow	Breathing Zone Airflow	Zone Air Distribution Effectiveness	Zone Outdoor Airflow	Outdoor Air Intake Flow Provided
					Az		Pz	Rp	Ra	Pz * Rp	Az * Ra	Vbz	Ez	Voz	
L					sqft	Yes/No	people	cfm/person	cfm/sqft	cfm	cfm	çfm		cfm	cfm
	AHU-5	AUDITOR	UM Heating	AUDITORIUM	5008	No	500.00	5	0.06	2500.00	300.48	2800.48	0.8 TOTAL:	3500.60 3500.60	3750 3750

AHU-5 VENTILATION CALCULATION - IAQ PROCEDURE


System Area		Ās	sqft	3725.6		Condition Ana	lyzed			Heating								AUILGY	/CNITH AT	ION CALC	III ATION
System Popu		Ps	people	60,00		Method to de	termine Ev			Appendix A								Anu-o	VENTILAT	ION CALC	OLATION
Sum of Zone		sum of Pz	people	60.00		Minimum Evz				0.68										Based on VI	MC 2018 - 403
Occupant Di		D		1.00		Critica Zone				6.02 - CLINIC											
Uncorrected	outdoor air intake	Vou	cfm	605.57		System Ventil				0.68											
System prim	ary airflow door air fraction	Vps Xs	cfm	2696.50 0.22		Outdoor air in Outdoor air in				888 1260			3875	30.0%							
Average out	JODE AIL LACTION	Va		0.22	l	Outdoor air in	take now pro-	nue <u>u</u>	_	1200	ı		30/3	30.070							
Α	В	С	D	Ε	F	G	Н	ı	J	К	Ĺ	М	N	0	Р	Q	R	S	Υ	U	V
VAV Box Number	Zone Name	Occupancy Category	Area	Default Population	Zone Population	People Outdoor Air Rate	Area Outdoor Air Rate	Occupancy Breathing Zone Airflow	Area Breathing Zone Airflow	Breathing Zone Airflow	Zone Air Distribution Effectiveness	Zone Outdoor Airflow	Zone Discharge Airflow	Zone Primary Airflow	Primary Outdoor Air Fraction	Zone Secondary Recirculation Fraction	Zone Primary Air Fraction	Supply Air Fraction	Mixed Air Fraction	Outdoor Air Fraction	Zone Ventilation Efficiency
			Az		Pz	Rp	Ra	Pz * Rp	Az * Ra	Vbz	Ez	Voz	Vdz	Vpz	Zpz	Er	Ep	Fa	Ep	Fc	Evz
			sqft	Yes/No	people	cfm/person	cfm/sqft	cfm	cfm	cfm		cfm	cfm	cfm							272
6.01	114	OFFICE	258.6	Vaa	2.0	_	0.06	10.00	1 5.52	25.52	0.0	31.90	350	245	0.13	1.00	0.70	1.00	0.70	1.00	1.06
6.01 6.02	CLINIC	PATIENT ROOM	245.8	Yes Yes	2.0 3.0	25	0.06	75.00	0.00	75.00	0.8 0.8	93.75	200	245 141	0.13	1.00 1.00	0.70	1.00	0.70	1.00 1.00	0.68
0.02	CLINIC WAITING	WAITING	215.6	Yes	11.0	7.5	0.06	82.50	12.94	95.44	0.8	119.30	300	211	0.56	1.00	0.70	1.00	0.70	1.00	0.76
	1/2 MAIN LOBBY	MAIN ENTRY LOBBY	189.6	Yes	2.0	7.5	0.06	10.00	11.38	21.38	0.8	26.72	175	123	0.22	1.00	0.70	1.00	0.70	1.00	1.00
6.03	1/2 MAIN LOBBY	MAIN ENTRY LOBBY	189.5	Yes	2.0	5	0.06	10.00	11.38	21.38	0.8	26.72	175	123	0.22	1,00	0.70	1.00	0.70	1.00	1.00
0.00	MAIN OFFICE	RECEPTION	494.9	Yes	15.0	5	0.06	75.00	29.69	104.69	0.8	130.87	555	389	0.34	1.00	0.70	1.00	0.70	1.00	0.92
6.04	104	OFFICE	158.7	Yes	1.0	5	0.06	5.00	9.52	14.52	0.8	18.15	300	171	0.11	1.00	0.57	1.00	0.57	1.00	1.06
6.05	MAIL/COPY	COPY	300.9	Yes	2.0	5	0.06	10.00	18.05	28.05	0.8	35.07	400	284	0.12	1.00	0.71	1.00	0.71	1.00	1.07
6.06	106	STORAGE	154.7	Yes	0.0	o	0.12	0.00	18.56	18.56	0.8	23.21	50	36	0.65	1,00	0.71	1.00	0.71	1.00	0.69
	CORRIDOR/STORAGE	CORRIDOR	537.2	Yes	0.0	o	0.06	0.00	32.23	32.23	0.8	40.29	100	71	0.57	1.00	0.71	1.00	0.71	1.00	0.75
	107	OFFICE	78.2	Yes	1.0	5	0.06	5.00	4.69	9.69	0.8	12.12	90	64	0.19	1.00	0.71	1.00	0.71	1.00	1.02
	108	OFFICE	77.4	Yes	1.0	5	0.06	5.00	4.64	9.64	8.0	12.06	90	64	0.19	1.00	0.71	1.00	0.71	1.00	1.02
	109	OFFICE	77.2	Yes	1.0	5	0.06	5.00	4.63	9.63	0.8	12.04	90	64	0.19	1.00	0.71	1.00	0.71	1.00	1.02
	110	OFFICE	77.2	Yes	1.0	5	0.06	5.00	4.63	9.63	0.8	12.04	90	64	0.19	1.00	0.71	1.00	0.71	1.00	1.02
	SR-1 - SINGLE RESTROOM	CORRIDOR	51.8	Yes	0.0	0	0.06	0.00	3.11	3.11	0.8	3.89	50	36	0.11	1.00	0.71	1.00	0.71	1.00	1.08
	SR-2 - SINGLE RESTROOM	CORRIDOR	52	Yes	0.0	0	0.06	0.00	3.12	3.12	0.8	3.90	50	36	0.11	1.00	0.71	1.00	0.71	1.00	1.08
6.07	CONFERENCE	CONFERENCE	311.7	Yes	16.0	5	0.06	80.00	18.70	98.70	0.8	123.38	510	367	0.34	1.00	0.72	1.00	0.72	1.00	0.91
6.08	PRINCIPAL	OFFICE	207.8	Yes	2.0	5	0.06	10.00	12.47	22.47	0.8	28.09	250	175	0.16	1.00	0.70	1.00	0.70	1.00	1.04
	PRINCIPAL'S TOILET	CORRIDOR	46.7	Yes	0.0	0	0.06	0.00	2.80	2.80	0.8	3.50	50	35	0.10	1.00	0.70	1.00	0.70	1.00	1.08

AHU-6 VENTILATION CALCULATION - IAQ PROCEDURE

KEVIN D. ALLEN Z Lic. No. 023349

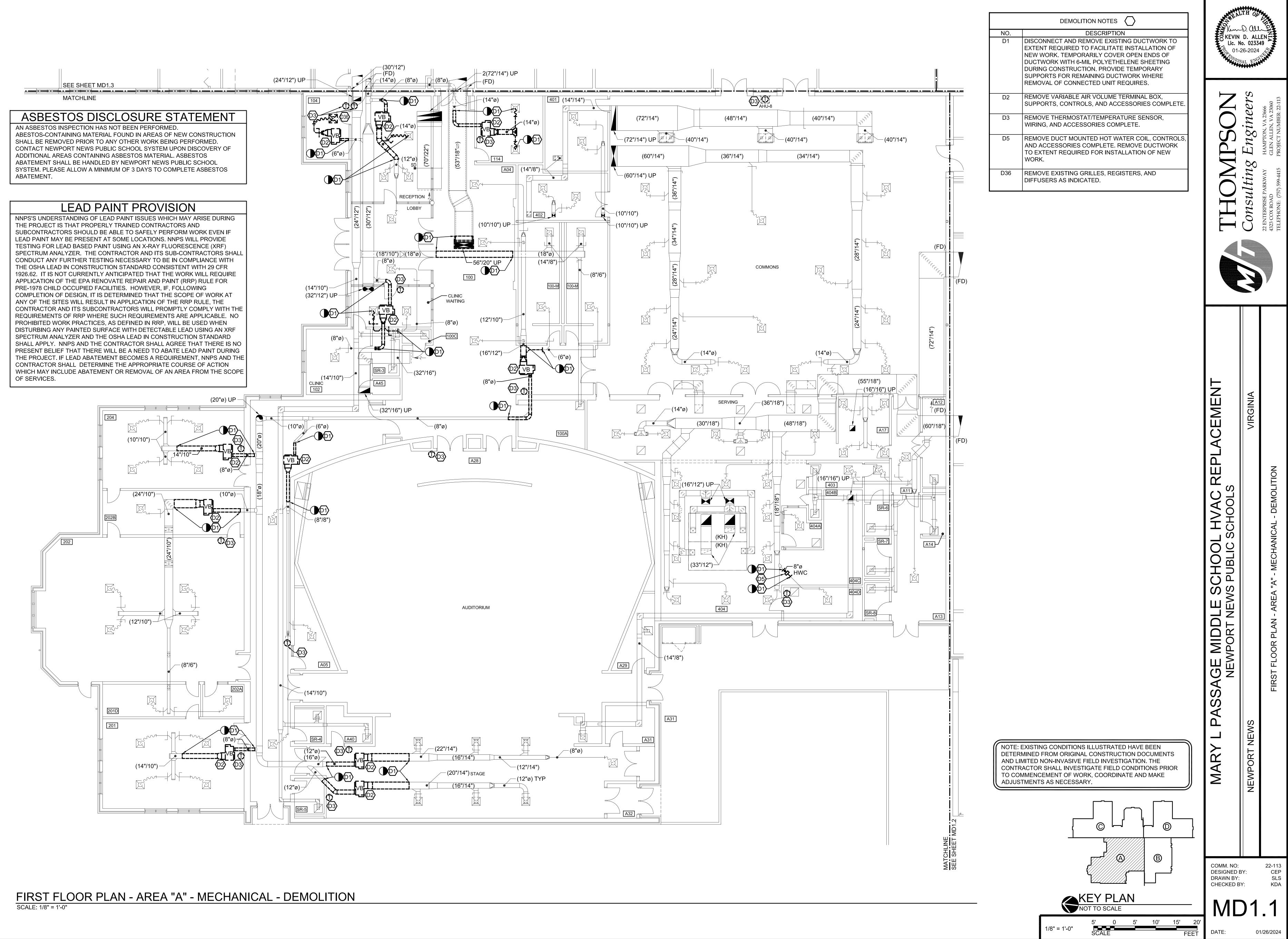
PASSAGE MIDDLE SCHOOL HVAC REPLACEMENT
NEWPORT NEWS PUBLIC SCHOOLS

AHU-7 VENTILATION CALCULATION - IAQ PROCEDURE

											AHU	-8 VENTILAT		ULATION MC 2018 - 403
Α	В	С	D	E	F	G	Н	Ī	J	K	L	M	N	O
System Number	System Name	Condition Analyzed	Occupancy Category	Area	Default Population	Zone Population	People Outdoor Air Rate	Area Outdoor Air Rate	Breathing	Area Breathing Zone Airflow	Breathing Zone Airflo	Distribution	Zone Outdoor Airflow	Outdoor Air Intake Flow Provided
				Az		Pz	Rp	Ra	Pz * Rp	Az * Ra	Vbz	Ez	Voz	
				sqft	Yes/No	people	cfm/person	cfm/sqft	cfr	cfm_	cfm		cfm	cfm
AHU-8	COMMONS	Heating	CAFETERIA	5895	No	300.00	7.5	0.18	2250.00	1061.10	3311.10	0.8	4138.88	
	402	Heating	OFFICE	259.5	Yes	1.30	5	0.06	6.49	15.57	22.06	0.8	27.57	
	401	Heating	OFFICE	275	Yes	1.38	5	0.06	6.88	16.50	23.38	8.0	29.22	
												TOTAL:	4195.67	4825

AHU-8 VENTILATION CALCULATION - IAQ PROCEDURE

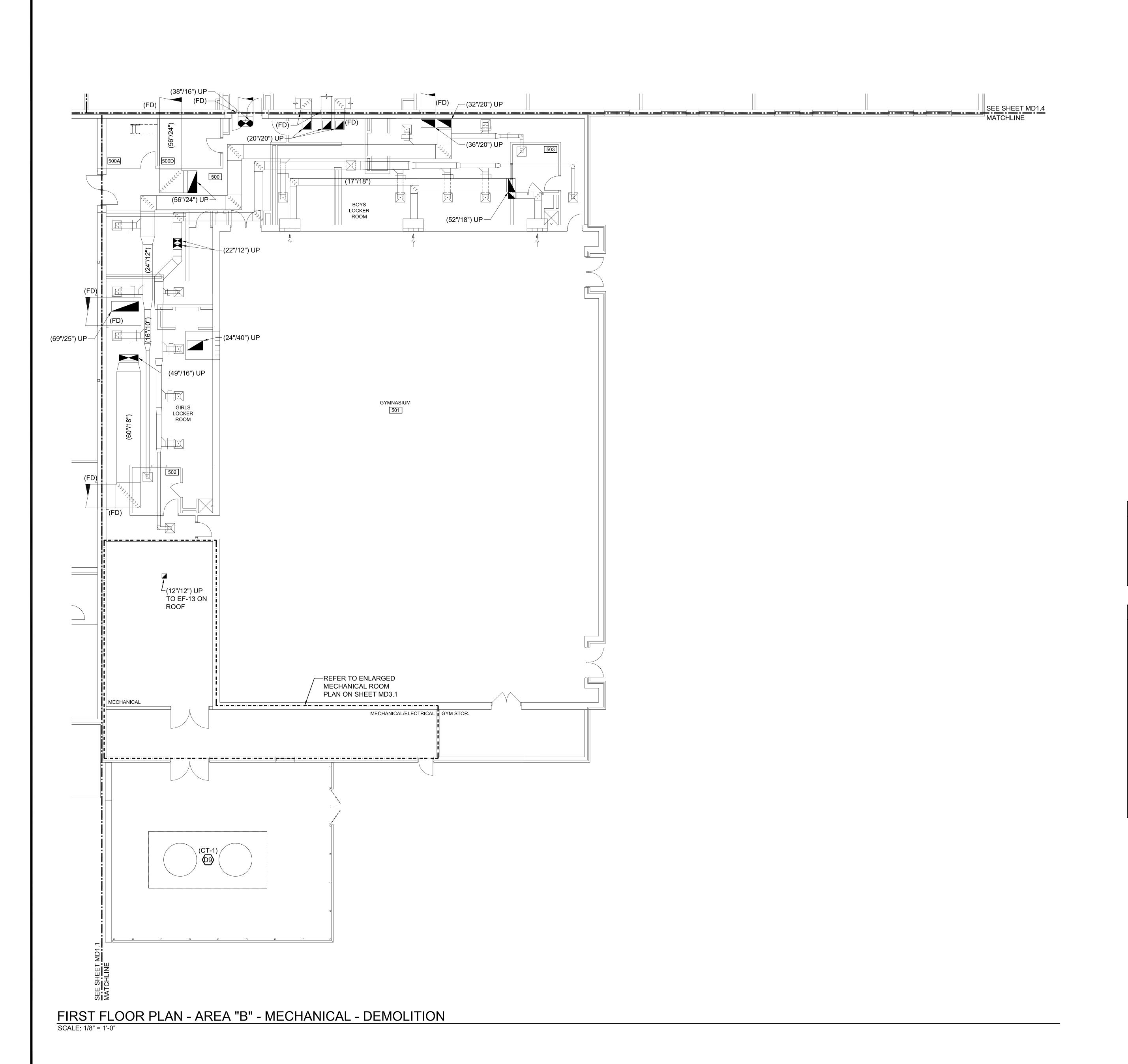
				.				·			AHU-9	VENTILAT	ION CALC	ULATION
												,	Based on \	/MC 2018 - 403
A System	В	C Condition	D	E	F Default	G Zone	People	I Area Outdoor	Occupancy	K Area	L Breathing	Zone Air	Zone	O Outdoor Air
Number	System Name	Analyzed	Occupancy Category	Area	Population	Population	Outdoor Air Rate	Air Rate	Breathing Zone Airflow	Breathing Zone Airflow	Zone Airflow	Distribution Effectiveness	Outdoor Airflow	Intake Flow Provided
				Az		Pz	Rp	Ra	Pz * Rp	Az * Ra	Vbz	Ez	Voz	
				sqft	Yes/No	people	cfm/person	cfm/sqft	cfrn	cfm	cfm		cfm	cfm
				,								,		
AHU-9	GIRLS LOCKER ROOM	Heating	CORRIDOR	1071.3	Yes	0.00	0	0.06	0.00	64.28	64.28	0.8	80.35	
AHU-9	GIRLS LOCKER ROOM OFFICE	Heating	OFFICE	98.1	Yes	0.49	5	0.06	2.4 <mark>5</mark>	5.89	8.34	8.0	10.42	
AHU-9	OFFICE RR-1	Heating	CORRIDOR	60.2	Yes	0.00	0	0.06	0.0	3.61	3.61	8.0	4.52	
AHU-9	500W - WOMENS RESTROOM	Heating	CORRIDOR	237.7	Yes	0.00	0	0.06	0.0	14.26	14.26	8.0	17.83	
AHU-9	500	Heating	CORRIDOR	492.8	Yes	0.00	0	0.06	0.0	29.57	29.57	8.0	36.96	
AHU-9	500M - MENS RESTROOM	Heating	CORRIDOR	237.9	Yes	0.00	0	0.06	0.0	14.27	14.27	8.0	17.84	
AHU-9	BOYS LOCKER ROOM	Heating	CORRIDOR	1021.3	Yes	0.00	0	0.06	0.0	61.28	61.28	8.0	76.60	
AHU-9	BOYS LOCKER ROOM OFFICE	Heating	OFFICE	98.1	Yes	0.49	5	0.06	2.45	5.89	8.34	8.0	10.42	
AHU-9	OFFICE RR-2	Heating	CORRIDOR	60	Yes	0.00	0	0.06	0.0	3.60	3.60	0.8	4.50	
AHU-9	500A	Heating	STORAGE	108.3	Yes	0.00	1	1 1	I O	11 (: N O	8.0	1 5.25	
AHU-9	500D	Heating	STORAGE	128.3	Yes	0.00	. 0	" 0.1 2	"U.UO	15.40	15.40	0.8	19.25	
												TOTAL:	294.94	1090


AHU-9 VENTILATION CALCULATION - IAQ PROCEDURE



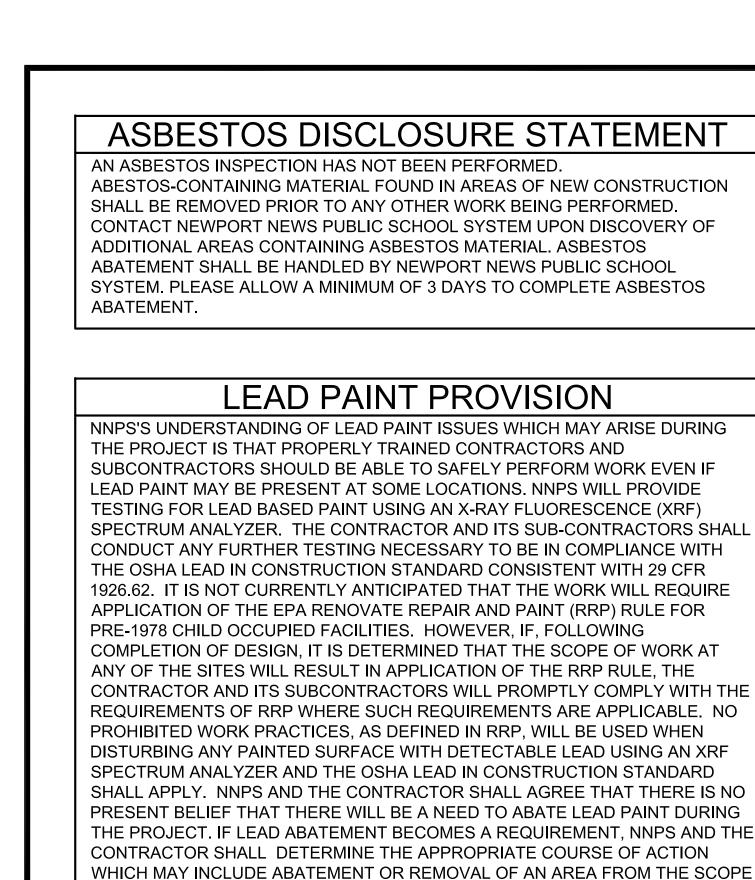
PASSAGE MIDDLE SCHOOL HVAC REPLACEMEN NEWPORT NEWS PUBLIC SCHOOLS

DESIGNED BY: DRAWN BY: CHECKED BY:


DEMOLITION NOTES DESCRIPTION EXISTING COOLING TOWER TO REMAIN.

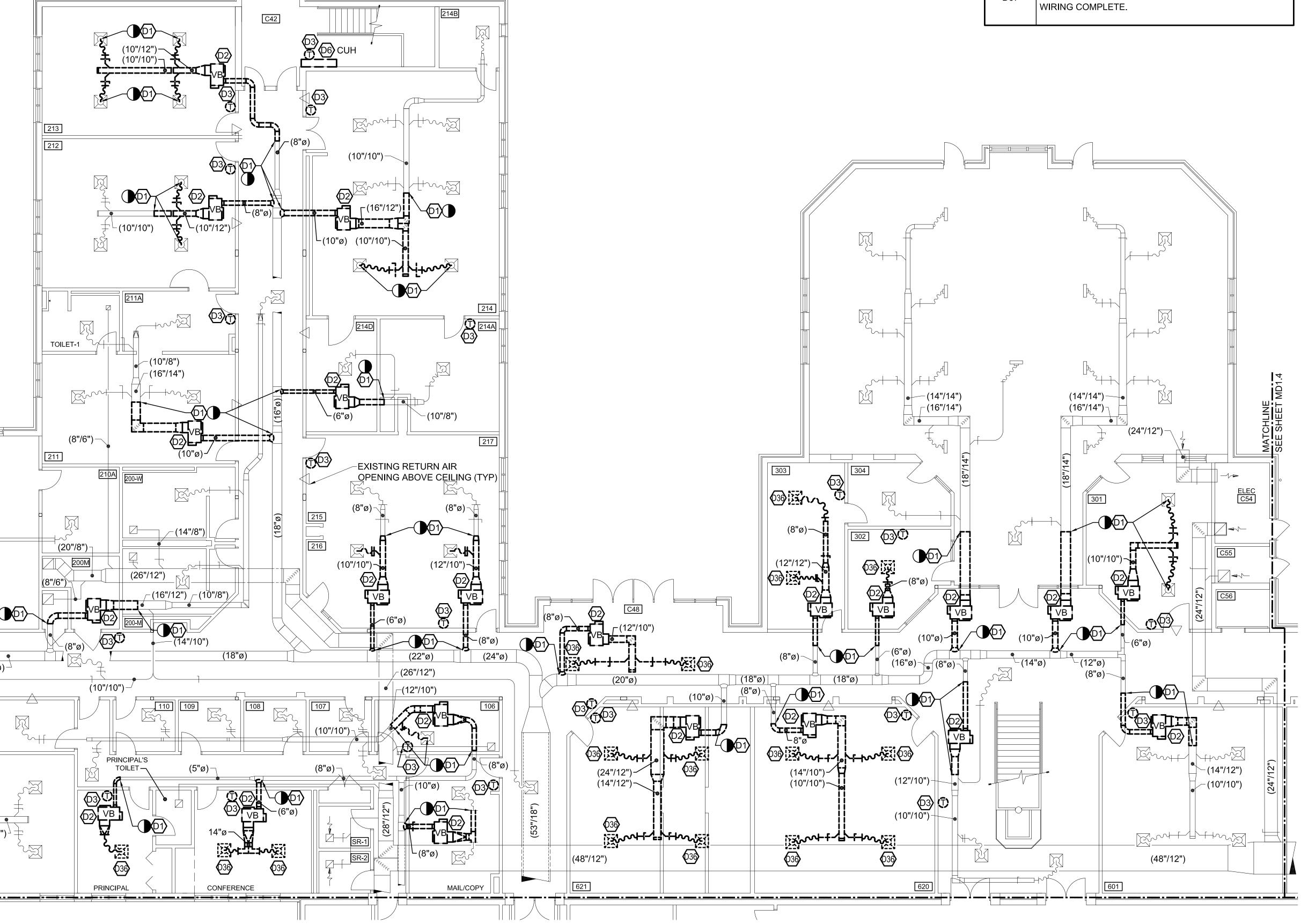
GE MIDI

MA

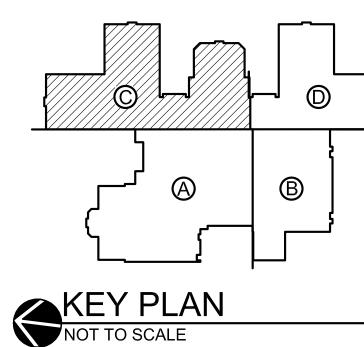

ASBESTOS DISCLOSURE STATEMENT

AN ASBESTOS INSPECTION HAS NOT BEEN PERFORMED. ABESTOS-CONTAINING MATERIAL FOUND IN AREAS OF NEW CONSTRUCTION SHALL BE REMOVED PRIOR TO ANY OTHER WORK BEING PERFORMED. CONTACT NEWPORT NEWS PUBLIC SCHOOL SYSTEM UPON DISCOVERY OF ADDITIONAL AREAS CONTAINING ASBESTOS MATERIAL. ASBESTOS ABATEMENT SHALL BE HANDLED BY NEWPORT NEWS PUBLIC SCHOOL SYSTEM. PLEASE ALLOW A MINIMUM OF 3 DAYS TO COMPLETE ASBESTOS ABATEMENT.

LEAD PAINT PROVISION


NNPS'S UNDERSTANDING OF LEAD PAINT ISSUES WHICH MAY ARISE DURING THE PROJECT IS THAT PROPERLY TRAINED CONTRACTORS AND SUBCONTRACTORS SHOULD BE ABLE TO SAFELY PERFORM WORK EVEN IF LEAD PAINT MAY BE PRESENT AT SOME LOCATIONS. NNPS WILL PROVIDE TESTING FOR LEAD BASED PAINT USING AN X-RAY FLUORESCENCE (XRF) SPECTRUM ANALYZER. THE CONTRACTOR AND ITS SUB-CONTRACTORS SHALL CONDUCT ANY FURTHER TESTING NECESSARY TO BE IN COMPLIANCE WITH THE OSHA LEAD IN CONSTRUCTION STANDARD CONSISTENT WITH 29 CFR 1926.62. IT IS NOT CURRENTLY ANTICIPATED THAT THE WORK WILL REQUIRE APPLICATION OF THE EPA RENOVATE REPAIR AND PAINT (RRP) RULE FOR PRE-1978 CHILD OCCUPIED FACILITIES. HOWEVER, IF, FOLLOWING COMPLETION OF DESIGN, IT IS DETERMINED THAT THE SCOPE OF WORK AT ANY OF THE SITES WILL RESULT IN APPLICATION OF THE RRP RULE, THE CONTRACTOR AND ITS SUBCONTRACTORS WILL PROMPTLY COMPLY WITH THE REQUIREMENTS OF RRP WHERE SUCH REQUIREMENTS ARE APPLICABLE. NO PROHIBITED WORK PRACTICES, AS DEFINED IN RRP, WILL BE USED WHEN DISTURBING ANY PAINTED SURFACE WITH DETECTABLE LEAD USING AN XRF SPECTRUM ANALYZER AND THE OSHA LEAD IN CONSTRUCTION STANDARD SHALL APPLY. NNPS AND THE CONTRACTOR SHALL AGREE THAT THERE IS NO PRESENT BELIEF THAT THERE WILL BE A NEED TO ABATE LEAD PAINT DURING THE PROJECT. IF LEAD ABATEMENT BECOMES A REQUIREMENT, NNPS AND THE CONTRACTOR SHALL DETERMINE THE APPROPRIATE COURSE OF ACTION WHICH MAY INCLUDE ABATEMENT OR REMOVAL OF AN AREA FROM THE SCOPE OF SERVICES.

> NOTE: EXISTING CONDITIONS ILLUSTRATED HAVE BEEN DETERMINED FROM ORIGINAL CONSTRUCTION DOCUMENTS AND LIMITED NON-INVASIVE FIELD INVESTIGATION. THE CONTRACTOR SHALL INVESTIGATE FIELD CONDITIONS PRIOR TO COMMENCEMENT OF WORK, COORDINATE AND MAKE ADJUSTMENTS AS NECESSARY.



OF SERVICES.

NOTE: EXISTING CONDITIONS ILLUSTRATED HAVE BEEN DETERMINED FROM ORIGINAL CONSTRUCTION DOCUMENTS AND LIMITED NON-INVASIVE FIELD INVESTIGATION. THE CONTRACTOR SHALL INVESTIGATE FIELD CONDITIONS PRIOR TO COMMENCEMENT OF WORK, COORDINATE AND MAKE ADJUSTMENTS AS NECESSARY.

COMM. NO: DESIGNED BY: DRAWN BY: CHECKED BY:

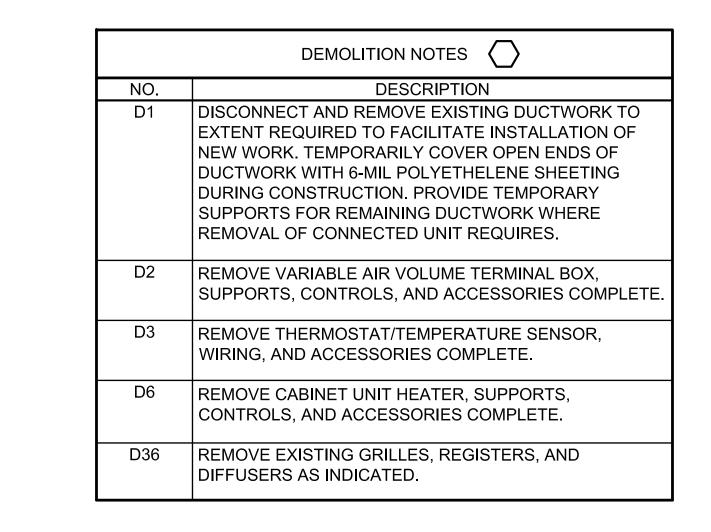
MARY

MD1.3

KEVIN D. ALLEN

Lic. No. 023349

01-26-2024

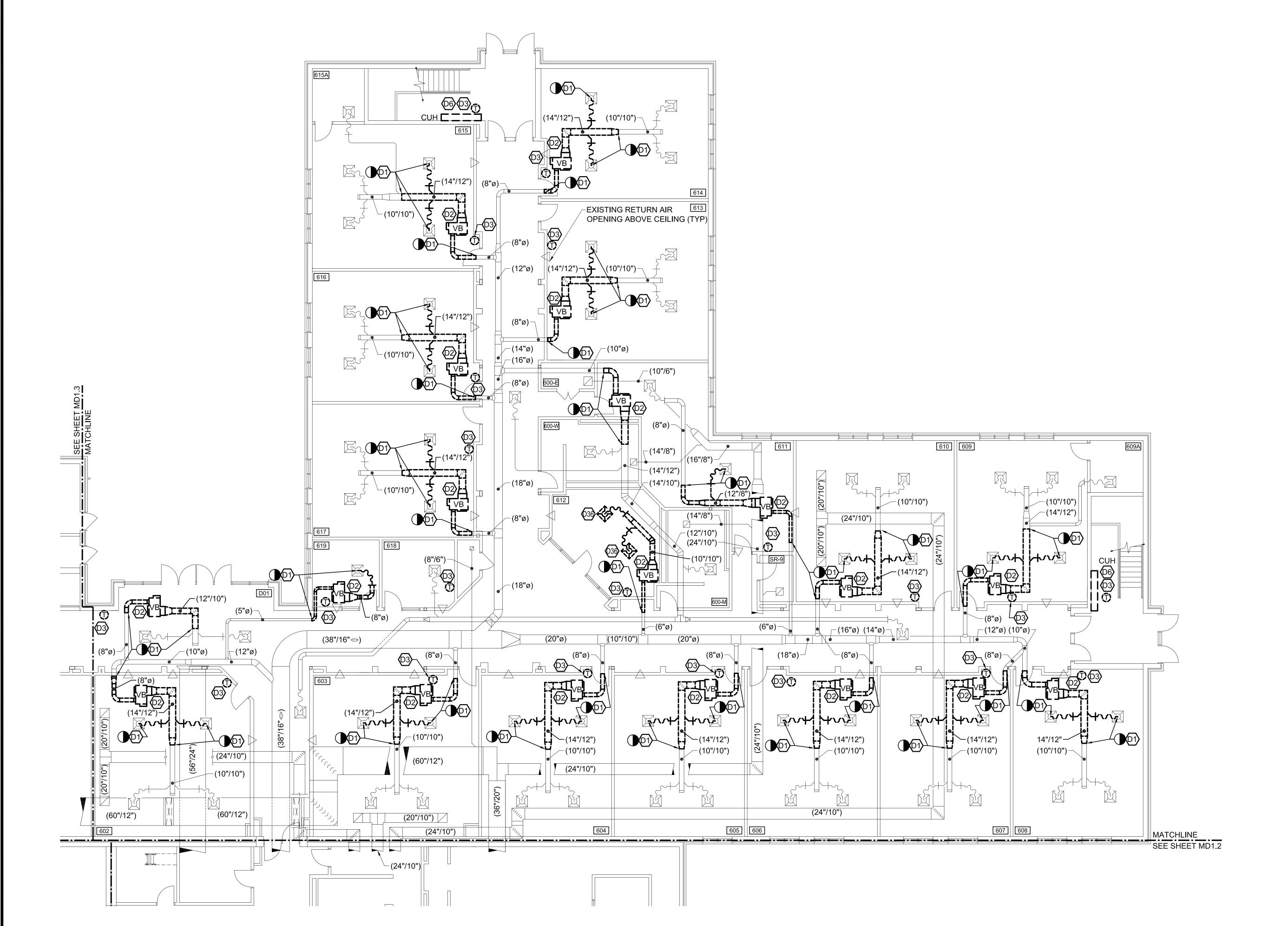

ACEMEN

PASSAGE MIDDLE SCHOOL
NEWPORT NEWS PUBLIC S

FIRST FLOOR PLAN - AREA "C" - MECHANICAL - DEMOLITION

SCALE: 1/8" = 1'-0

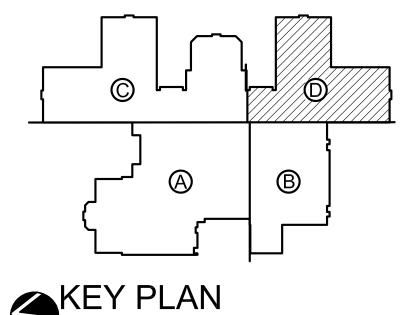
(16"/12") (12"/10")



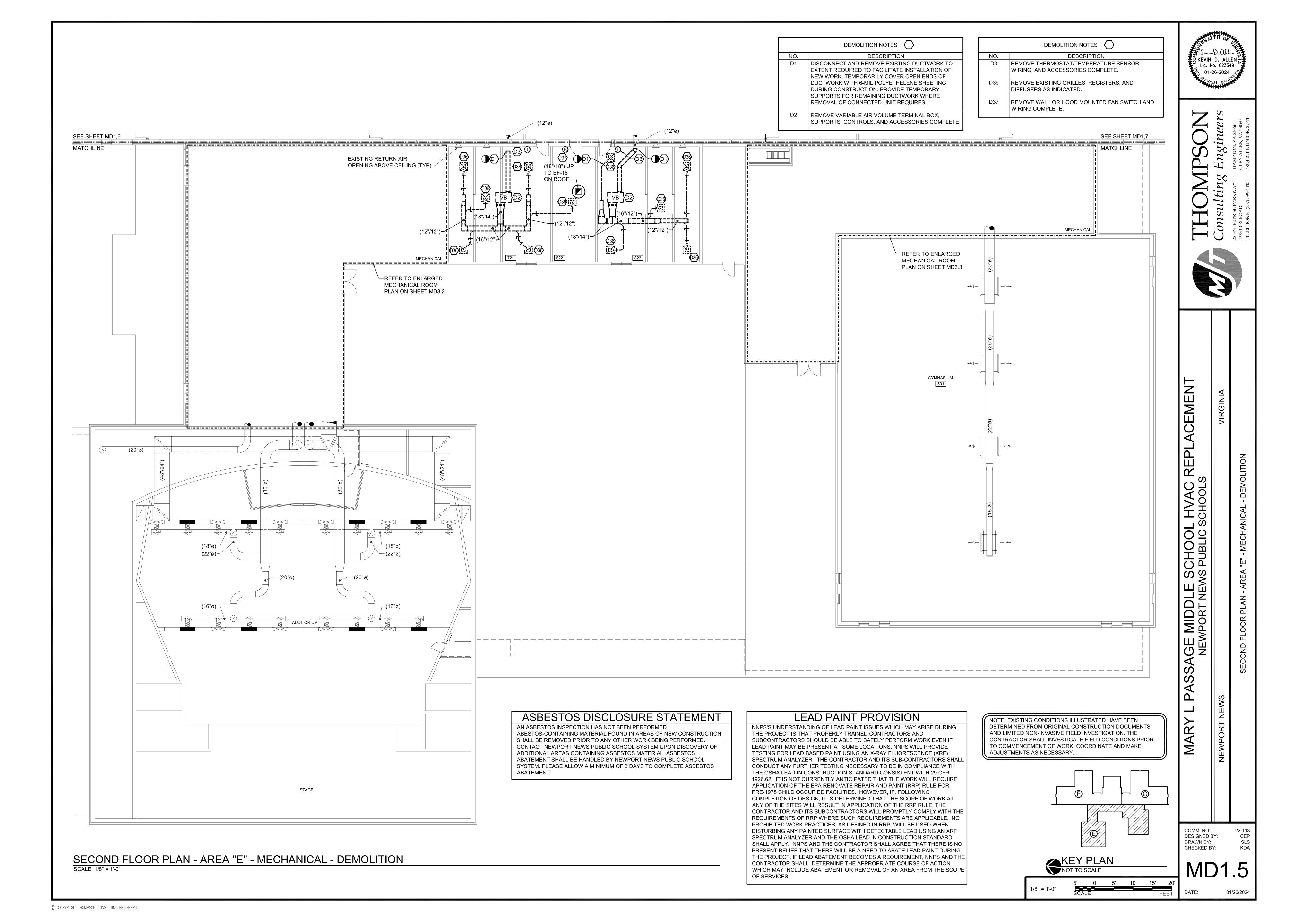
ACEMEN

GE MIDI

MA


ASBESTOS DISCLOSURE STATEMENT

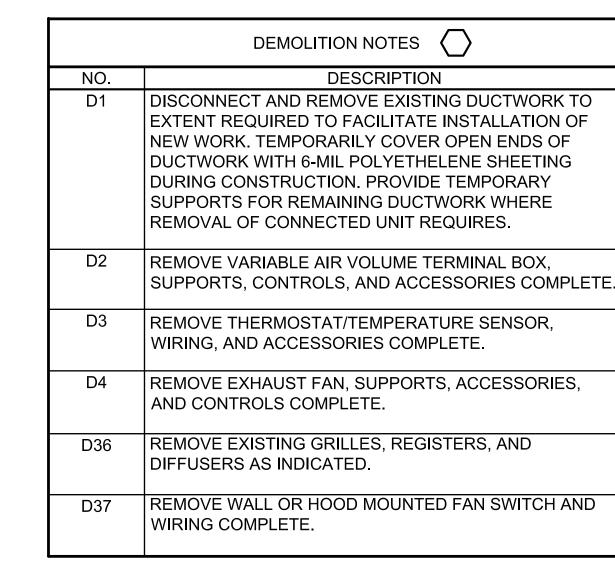
AN ASBESTOS INSPECTION HAS NOT BEEN PERFORMED. ABESTOS-CONTAINING MATERIAL FOUND IN AREAS OF NEW CONSTRUCTION SHALL BE REMOVED PRIOR TO ANY OTHER WORK BEING PERFORMED. CONTACT NEWPORT NEWS PUBLIC SCHOOL SYSTEM UPON DISCOVERY OF ADDITIONAL AREAS CONTAINING ASBESTOS MATERIAL. ASBESTOS ABATEMENT SHALL BE HANDLED BY NEWPORT NEWS PUBLIC SCHOOL SYSTEM. PLEASE ALLOW A MINIMUM OF 3 DAYS TO COMPLETE ASBESTOS ABATEMENT.


LEAD PAINT PROVISION

NNPS'S UNDERSTANDING OF LEAD PAINT ISSUES WHICH MAY ARISE DURING THE OSHA LEAD IN CONSTRUCTION STANDARD CONSISTENT WITH 29 CFR 1926.62. IT IS NOT CURRENTLY ANTICIPATED THAT THE WORK WILL REQUIRE APPLICATION OF THE EPA RENOVATE REPAIR AND PAINT (RRP) RULE FOR PRE-1978 CHILD OCCUPIED FACILITIES. HOWEVER, IF, FOLLOWING COMPLETION OF DESIGN, IT IS DETERMINED THAT THE SCOPE OF WORK AT DISTURBING ANY PAINTED SURFACE WITH DETECTABLE LEAD USING AN XRF WHICH MAY INCLUDE ABATEMENT OR REMOVAL OF AN AREA FROM THE SCOPE OF SERVICES.

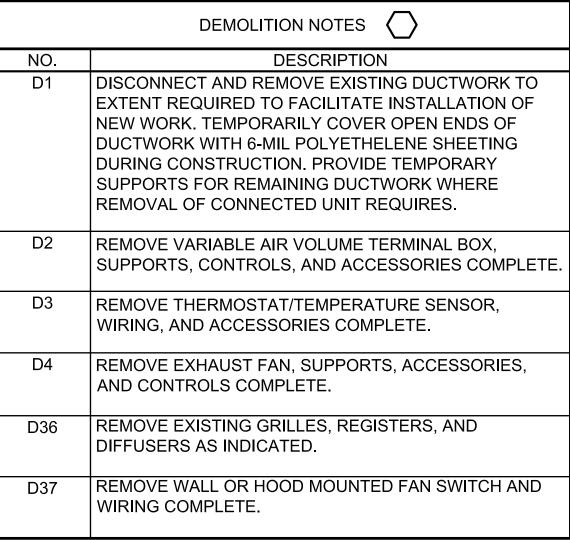
> NOTE: EXISTING CONDITIONS ILLUSTRATED HAVE BEEN DETERMINED FROM ORIGINAL CONSTRUCTION DOCUMENTS AND LIMITED NON-INVASIVE FIELD INVESTIGATION. THE CONTRACTOR SHALL INVESTIGATE FIELD CONDITIONS PRIOR TO COMMENCEMENT OF WORK, COORDINATE AND MAKE ADJUSTMENTS AS NECESSARY.

KEY PLAN
NOT TO SCALE



ASBESTOS DISCLOSURE STATEMENT AN ASBESTOS INSPECTION HAS NOT BEEN PERFORMED.

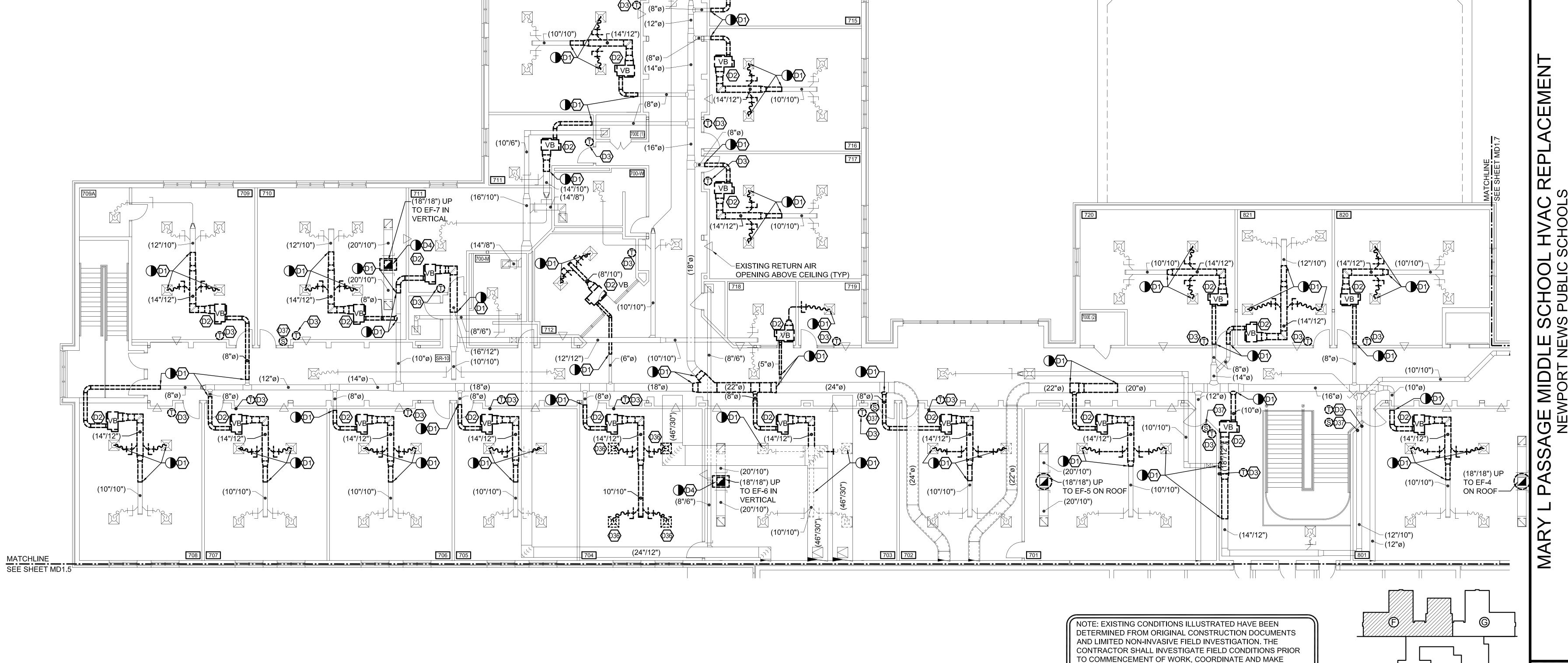
ABESTOS-CONTAINING MATERIAL FOUND IN AREAS OF NEW CONSTRUCTION SHALL BE REMOVED PRIOR TO ANY OTHER WORK BEING PERFORMED. CONTACT NEWPORT NEWS PUBLIC SCHOOL SYSTEM UPON DISCOVERY OF ADDITIONAL AREAS CONTAINING ASBESTOS MATERIAL. ASBESTOS ABATEMENT SHALL BE HANDLED BY NEWPORT NEWS PUBLIC SCHOOL SYSTEM. PLEASE ALLOW A MINIMUM OF 3 DAYS TO COMPLETE ASBESTOS ABATEMENT.


LEAD PAINT PROVISION

NNPS'S UNDERSTANDING OF LEAD PAINT ISSUES WHICH MAY ARISE DURING THE PROJECT IS THAT PROPERLY TRAINED CONTRACTORS AND SUBCONTRACTORS SHOULD BE ABLE TO SAFELY PERFORM WORK EVEN IF LEAD PAINT MAY BE PRESENT AT SOME LOCATIONS. NNPS WILL PROVIDE TESTING FOR LEAD BASED PAINT USING AN X-RAY FLUORESCENCE (XRF) SPECTRUM ANALYZER. THE CONTRACTOR AND ITS SUB-CONTRACTORS SHALL CONDUCT ANY FURTHER TESTING NECESSARY TO BE IN COMPLIANCE WITH THE OSHA LEAD IN CONSTRUCTION STANDARD CONSISTENT WITH 29 CFR 1926.62. IT IS NOT CURRENTLY ANTICIPATED THAT THE WORK WILL REQUIRE APPLICATION OF THE EPA RENOVATE REPAIR AND PAINT (RRP) RULE FOR PRE-1978 CHILD OCCUPIED FACILITIES. HOWEVER, IF, FOLLOWING COMPLETION OF DESIGN, IT IS DETERMINED THAT THE SCOPE OF WORK AT ANY OF THE SITES WILL RESULT IN APPLICATION OF THE RRP RULE, THE CONTRACTOR AND ITS SUBCONTRACTORS WILL PROMPTLY COMPLY WITH THE REQUIREMENTS OF RRP WHERE SUCH REQUIREMENTS ARE APPLICABLE. NO PROHIBITED WORK PRACTICES, AS DEFINED IN RRP, WILL BE USED WHEN DISTURBING ANY PAINTED SURFACE WITH DETECTABLE LEAD USING AN XRF SPECTRUM ANALYZER AND THE OSHA LEAD IN CONSTRUCTION STANDARD SHALL APPLY. NNPS AND THE CONTRACTOR SHALL AGREE THAT THERE IS NO PRESENT BELIEF THAT THERE WILL BE A NEED TO ABATE LEAD PAINT DURING THE PROJECT. IF LEAD ABATEMENT BECOMES A REQUIREMENT, NNPS AND THE CONTRACTOR SHALL DETERMINE THE APPROPRIATE COURSE OF ACTION WHICH MAY INCLUDE ABATEMENT OR REMOVAL OF AN AREA FROM THE SCOPE OF SERVICES.

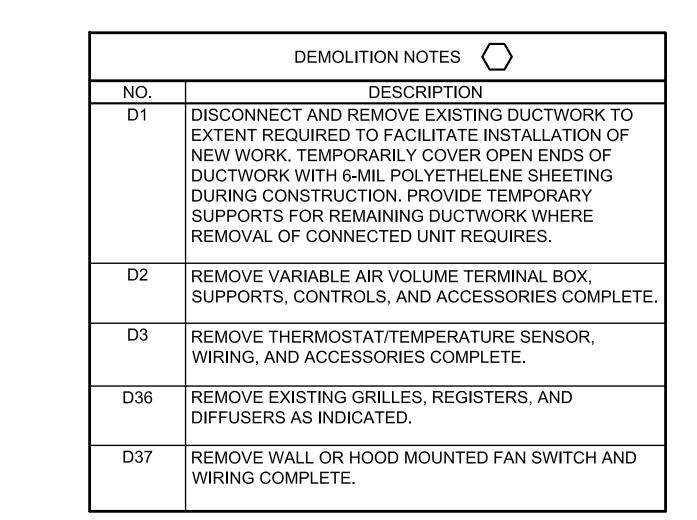
/-----

ADJUSTMENTS AS NECESSARY.


KEVIN D. ALLEN

Lic. No. 023349

01-26-2024


DESIGNED BY: DRAWN BY CHECKED BY:

KEY PLAN

SCALE: 1/8" = 1'-0"

SECOND FLOOR PLAN - AREA "F" - MECHANICAL - DEMOLITION

ASBESTOS DISCLOSURE STATEMENT

ABESTOS-CONTAINING MATERIAL FOUND IN AREAS OF NEW CONSTRUCTION

CONTACT NEWPORT NEWS PUBLIC SCHOOL SYSTEM UPON DISCOVERY OF

LEAD PAINT PROVISION

NNPS'S UNDERSTANDING OF LEAD PAINT ISSUES WHICH MAY ARISE DURING

SUBCONTRACTORS SHOULD BE ABLE TO SAFELY PERFORM WORK EVEN IF LEAD PAINT MAY BE PRESENT AT SOME LOCATIONS. NNPS WILL PROVIDE

CONDUCT ANY FURTHER TESTING NECESSARY TO BE IN COMPLIANCE WITH THE OSHA LEAD IN CONSTRUCTION STANDARD CONSISTENT WITH 29 CFR 1926.62. IT IS NOT CURRENTLY ANTICIPATED THAT THE WORK WILL REQUIRE APPLICATION OF THE EPA RENOVATE REPAIR AND PAINT (RRP) RULE FOR

COMPLETION OF DESIGN, IT IS DETERMINED THAT THE SCOPE OF WORK AT ANY OF THE SITES WILL RESULT IN APPLICATION OF THE RRP RULE, THE

PROHIBITED WORK PRACTICES, AS DEFINED IN RRP, WILL BE USED WHEN DISTURBING ANY PAINTED SURFACE WITH DETECTABLE LEAD USING AN XRF

CONTRACTOR AND ITS SUBCONTRACTORS WILL PROMPTLY COMPLY WITH THI

PRESENT BELIEF THAT THERE WILL BE A NEED TO ABATE LEAD PAINT DURING THE PROJECT. IF LEAD ABATEMENT BECOMES A REQUIREMENT, NNPS AND THE

WHICH MAY INCLUDE ABATEMENT OR REMOVAL OF AN AREA FROM THE SCOPE

SHALL BE REMOVED PRIOR TO ANY OTHER WORK BEING PERFORMED.

ABATEMENT SHALL BE HANDLED BY NEWPORT NEWS PUBLIC SCHOOL SYSTEM. PLEASE ALLOW A MINIMUM OF 3 DAYS TO COMPLETE ASBESTOS

ADDITIONAL AREAS CONTAINING ASBESTOS MATERIAL. ASBESTOS

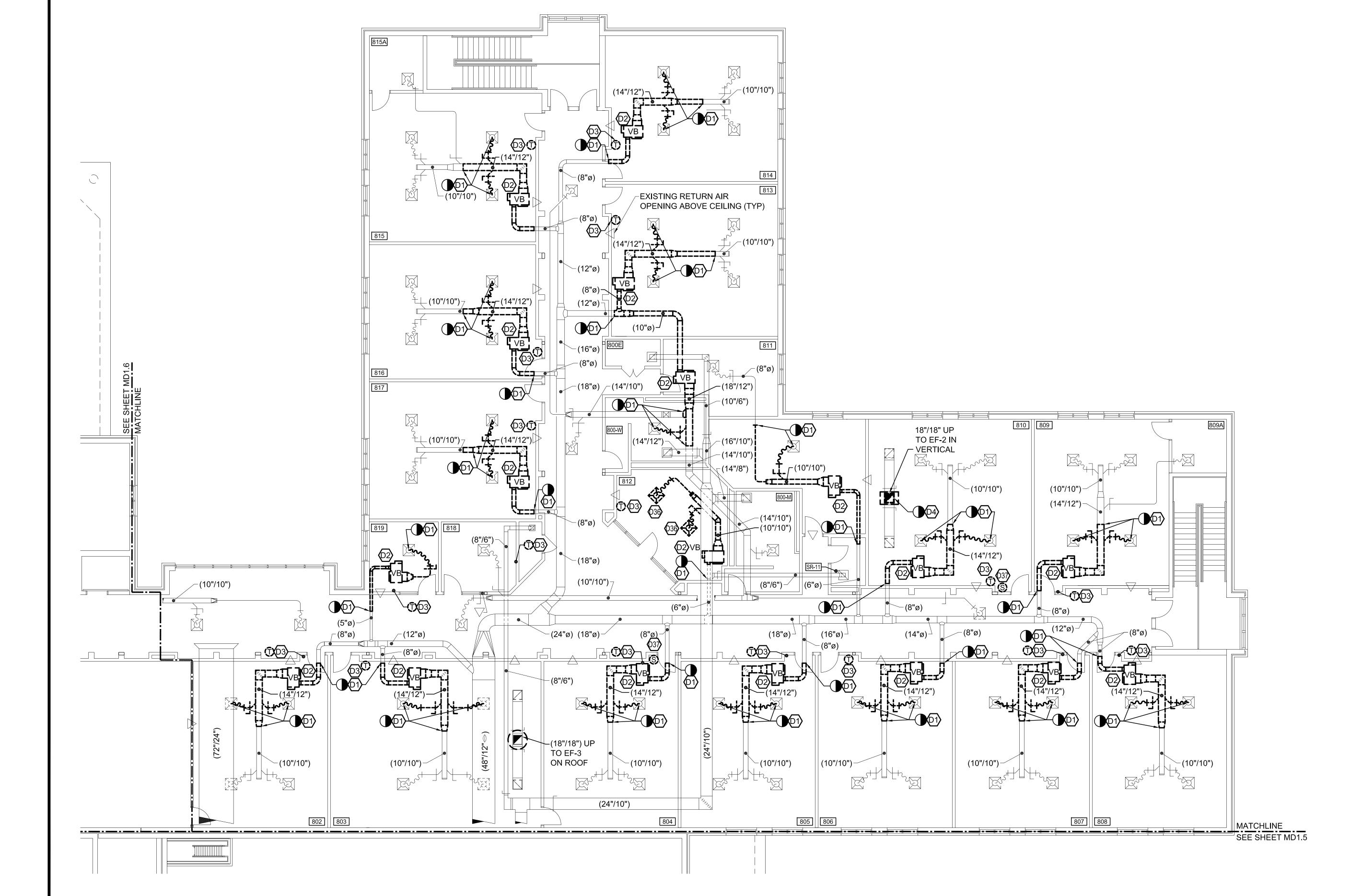
THE PROJECT IS THAT PROPERLY TRAINED CONTRACTORS AND

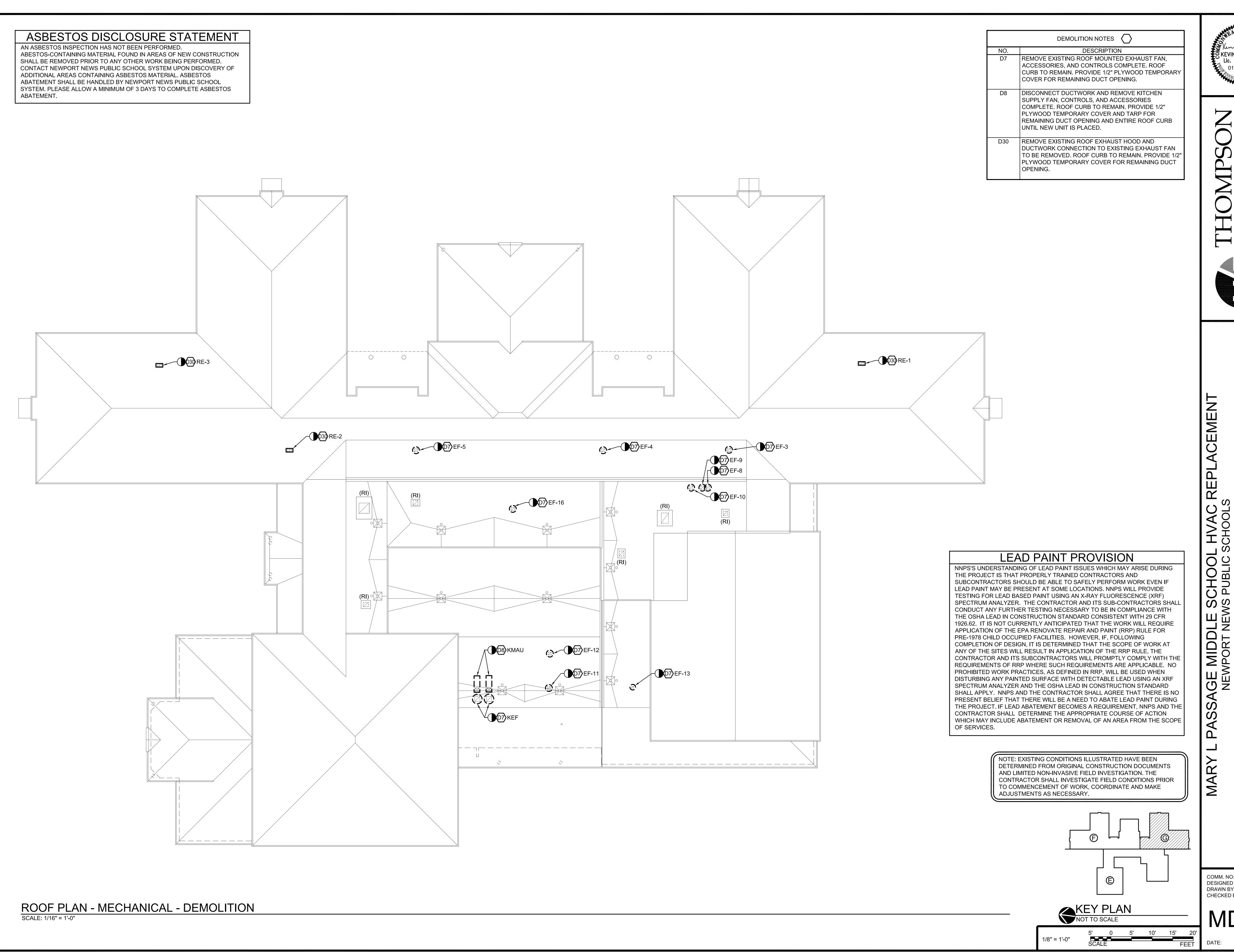
PRE-1978 CHILD OCCUPIED FACILITIES. HOWEVER, IF, FOLLOWING

AN ASBESTOS INSPECTION HAS NOT BEEN PERFORMED.

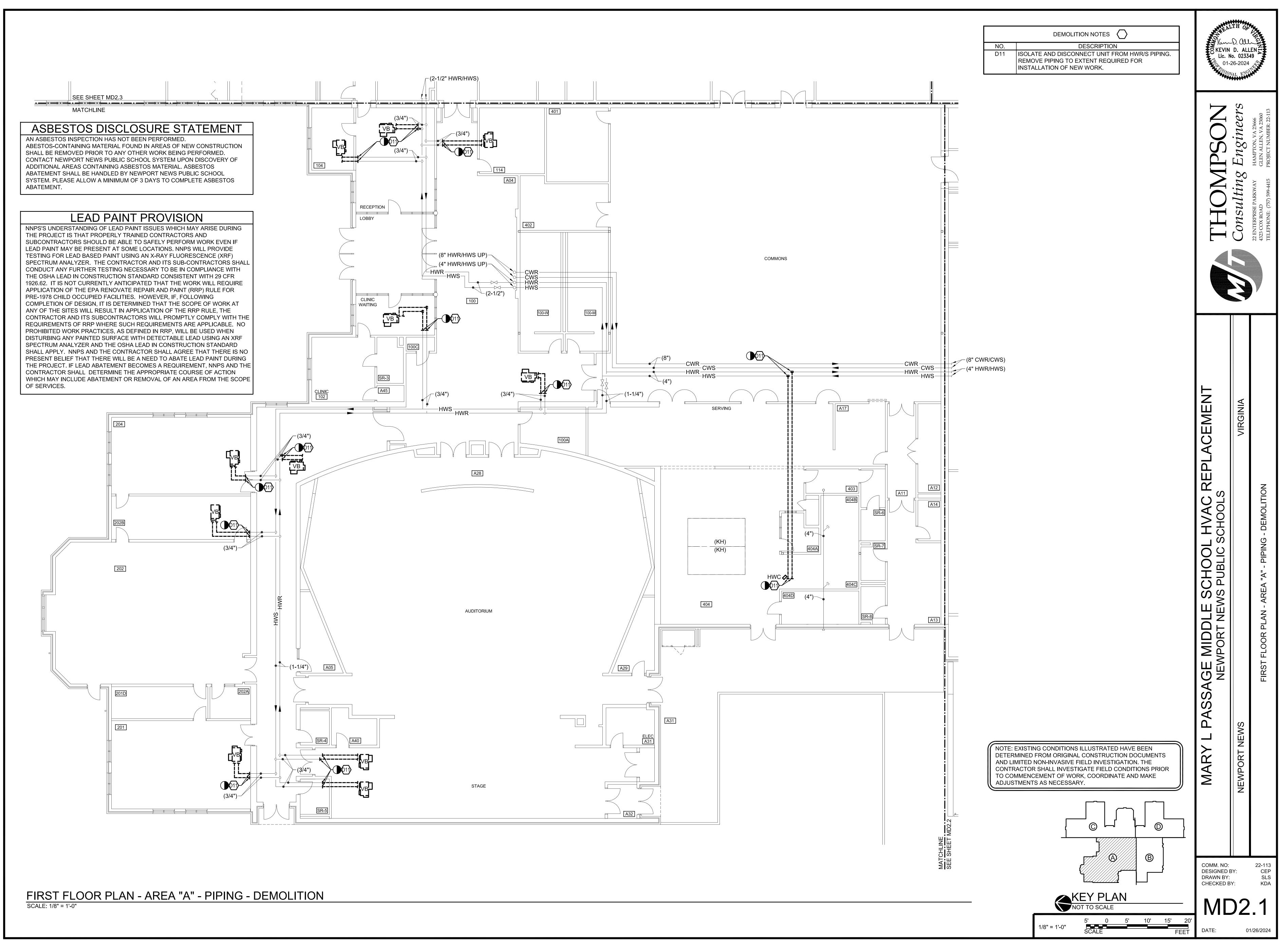
ABATEMENT.

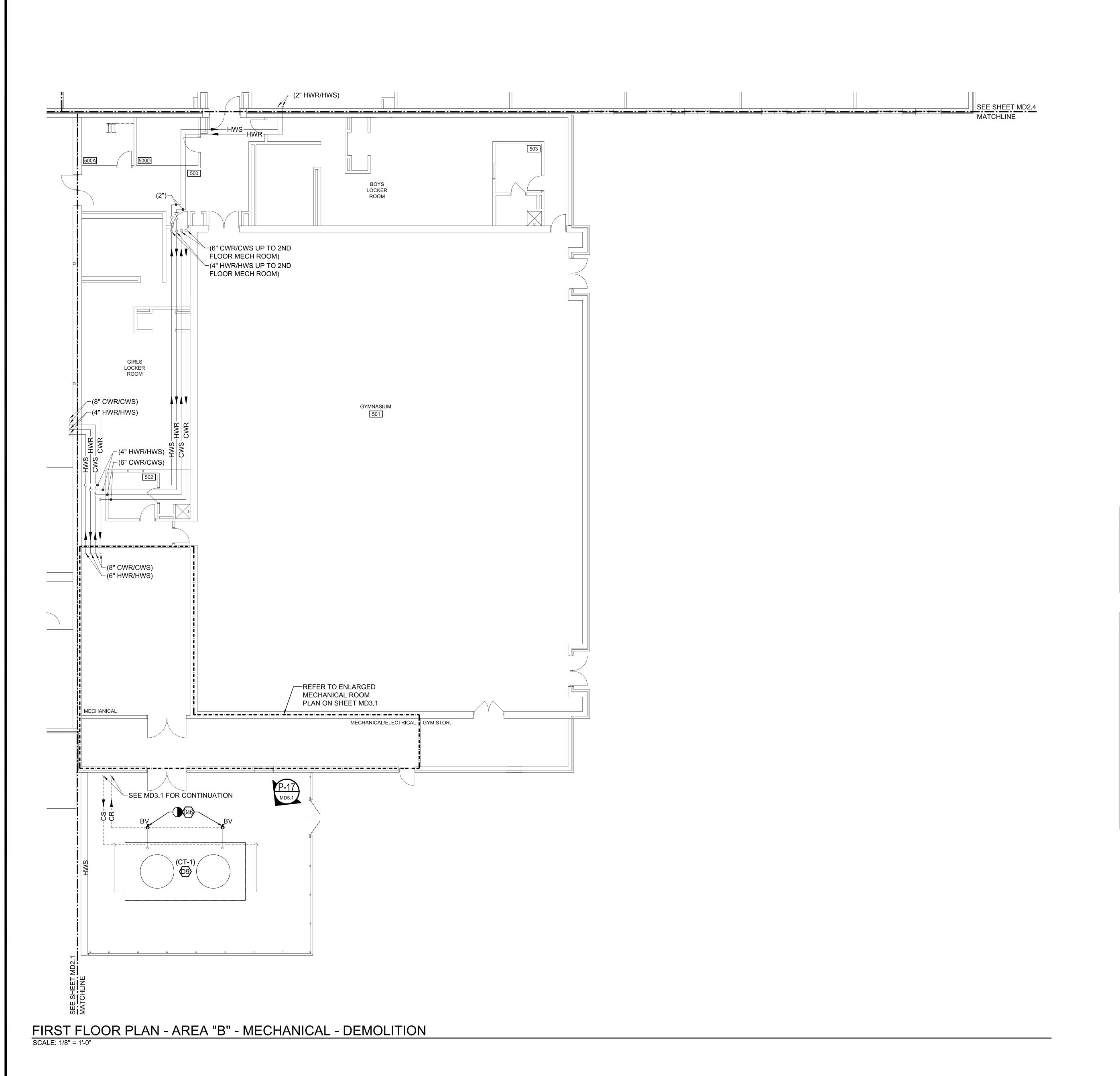
OF SERVICES.

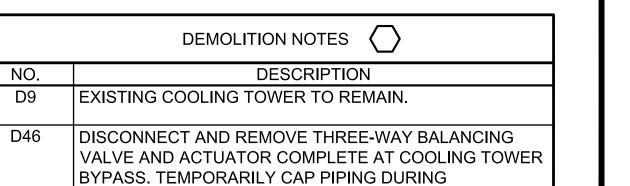



EMEN

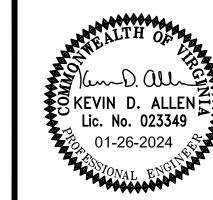
MAI


CHECKED BY:


NOTE: EXISTING CONDITIONS ILLUSTRATED HAVE BEEN DETERMINED FROM ORIGINAL CONSTRUCTION DOCUMENTS AND LIMITED NON-INVASIVE FIELD INVESTIGATION. THE CONTRACTOR SHALL INVESTIGATE FIELD CONDITIONS PRIOR TO COMMENCEMENT OF WORK, COORDINATE AND MAKE ADJUSTMENTS AS NECESSARY. KEY PLAN
NOT TO SCALE

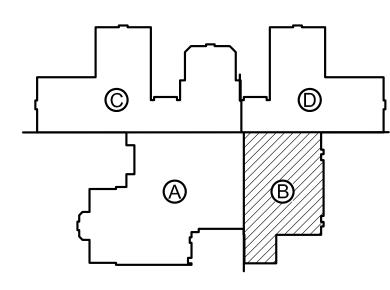


DESIGNED BY: CHECKED BY:



CONSTRUCTION TO PREVENT CONTAMINATION OF THE

CONDENSER WATER SYSTEM.

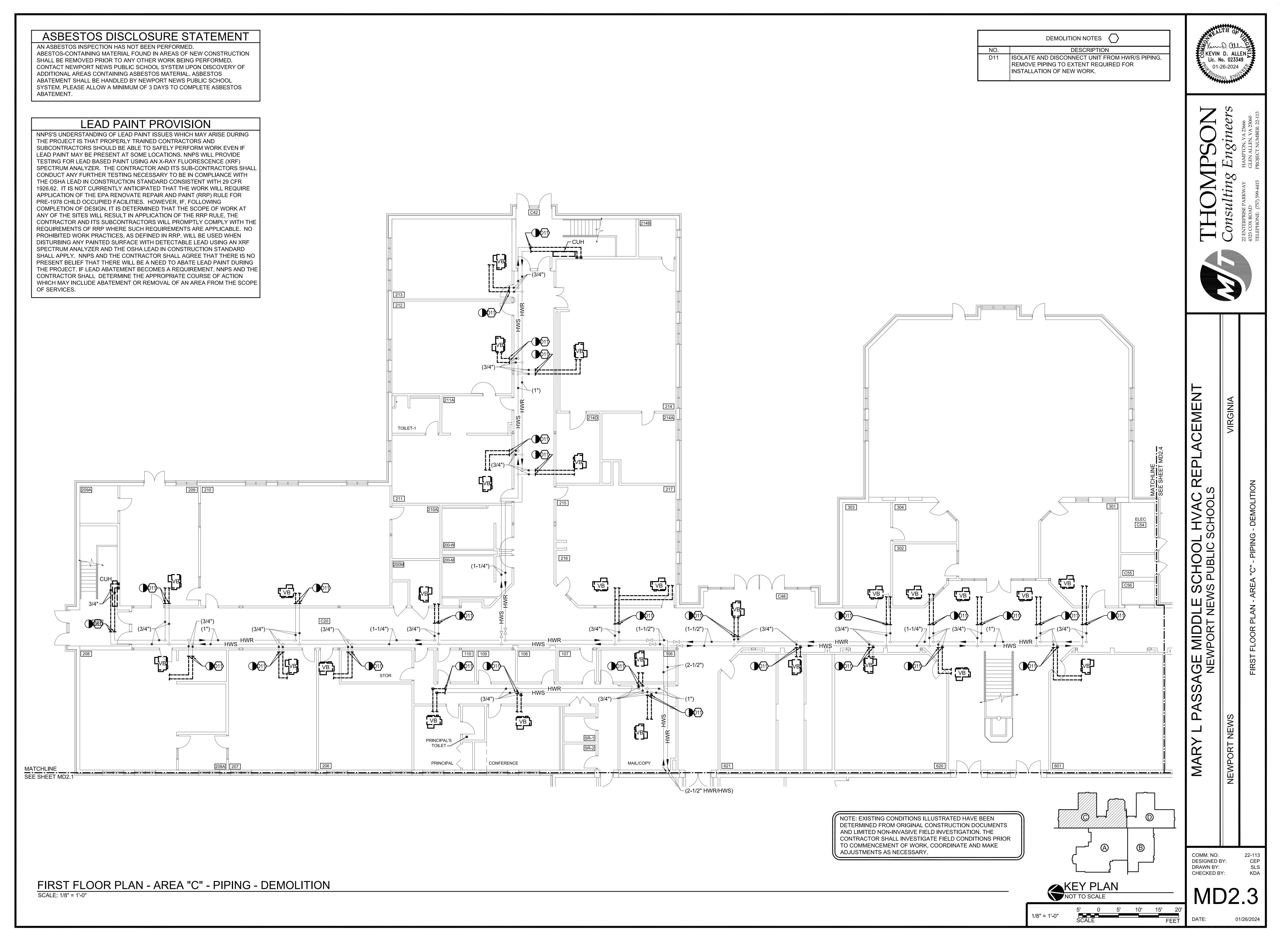


ASBESTOS DISCLOSURE STATEMENT AN ASBESTOS INSPECTION HAS NOT BEEN PERFORMED. ABESTOS-CONTAINING MATERIAL FOUND IN AREAS OF NEW CONSTRUCTION SHALL BE REMOVED PRIOR TO ANY OTHER WORK BEING PERFORMED. CONTACT NEWPORT NEWS PUBLIC SCHOOL SYSTEM UPON DISCOVERY OF ADDITIONAL AREAS CONTAINING ASBESTOS MATERIAL. ASBESTOS ABATEMENT SHALL BE HANDLED BY NEWPORT NEWS PUBLIC SCHOOL SYSTEM. PLEASE ALLOW A MINIMUM OF 3 DAYS TO COMPLETE ASBESTOS ABATEMENT.

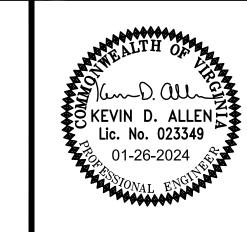
LEAD PAINT PROVISION

NNPS'S UNDERSTANDING OF LEAD PAINT ISSUES WHICH MAY ARISE DURING THE PROJECT IS THAT PROPERLY TRAINED CONTRACTORS AND SUBCONTRACTORS SHOULD BE ABLE TO SAFELY PERFORM WORK EVEN IF LEAD PAINT MAY BE PRESENT AT SOME LOCATIONS. NNPS WILL PROVIDE TESTING FOR LEAD BASED PAINT USING AN X-RAY FLUORESCENCE (XRF) SPECTRUM ANALYZER. THE CONTRACTOR AND ITS SUB-CONTRACTORS SHALI CONDUCT ANY FURTHER TESTING NECESSARY TO BE IN COMPLIANCE WITH THE OSHA LEAD IN CONSTRUCTION STANDARD CONSISTENT WITH 29 CFR 1926.62. IT IS NOT CURRENTLY ANTICIPATED THAT THE WORK WILL REQUIRE APPLICATION OF THE EPA RENOVATE REPAIR AND PAINT (RRP) RULE FOR PRE-1978 CHILD OCCUPIED FACILITIES. HOWEVER, IF, FOLLOWING COMPLETION OF DESIGN, IT IS DETERMINED THAT THE SCOPE OF WORK AT ANY OF THE SITES WILL RESULT IN APPLICATION OF THE RRP RULE, THE CONTRACTOR AND ITS SUBCONTRACTORS WILL PROMPTLY COMPLY WITH THE REQUIREMENTS OF RRP WHERE SUCH REQUIREMENTS ARE APPLICABLE. NO PROHIBITED WORK PRACTICES, AS DEFINED IN RRP, WILL BE USED WHEN DISTURBING ANY PAINTED SURFACE WITH DETECTABLE LEAD USING AN XRF SPECTRUM ANALYZER AND THE OSHA LEAD IN CONSTRUCTION STANDARD SHALL APPLY. NNPS AND THE CONTRACTOR SHALL AGREE THAT THERE IS NO PRESENT BELIEF THAT THERE WILL BE A NEED TO ABATE LEAD PAINT DURING THE PROJECT. IF LEAD ABATEMENT BECOMES A REQUIREMENT, NNPS AND THE CONTRACTOR SHALL DETERMINE THE APPROPRIATE COURSE OF ACTION WHICH MAY INCLUDE ABATEMENT OR REMOVAL OF AN AREA FROM THE SCOPE OF SERVICES.

> NOTE: EXISTING CONDITIONS ILLUSTRATED HAVE BEEN DETERMINED FROM ORIGINAL CONSTRUCTION DOCUMENTS AND LIMITED NON-INVASIVE FIELD INVESTIGATION. THE CONTRACTOR SHALL INVESTIGATE FIELD CONDITIONS PRIOR TO COMMENCEMENT OF WORK, COORDINATE AND MAKE ADJUSTMENTS AS NECESSARY.



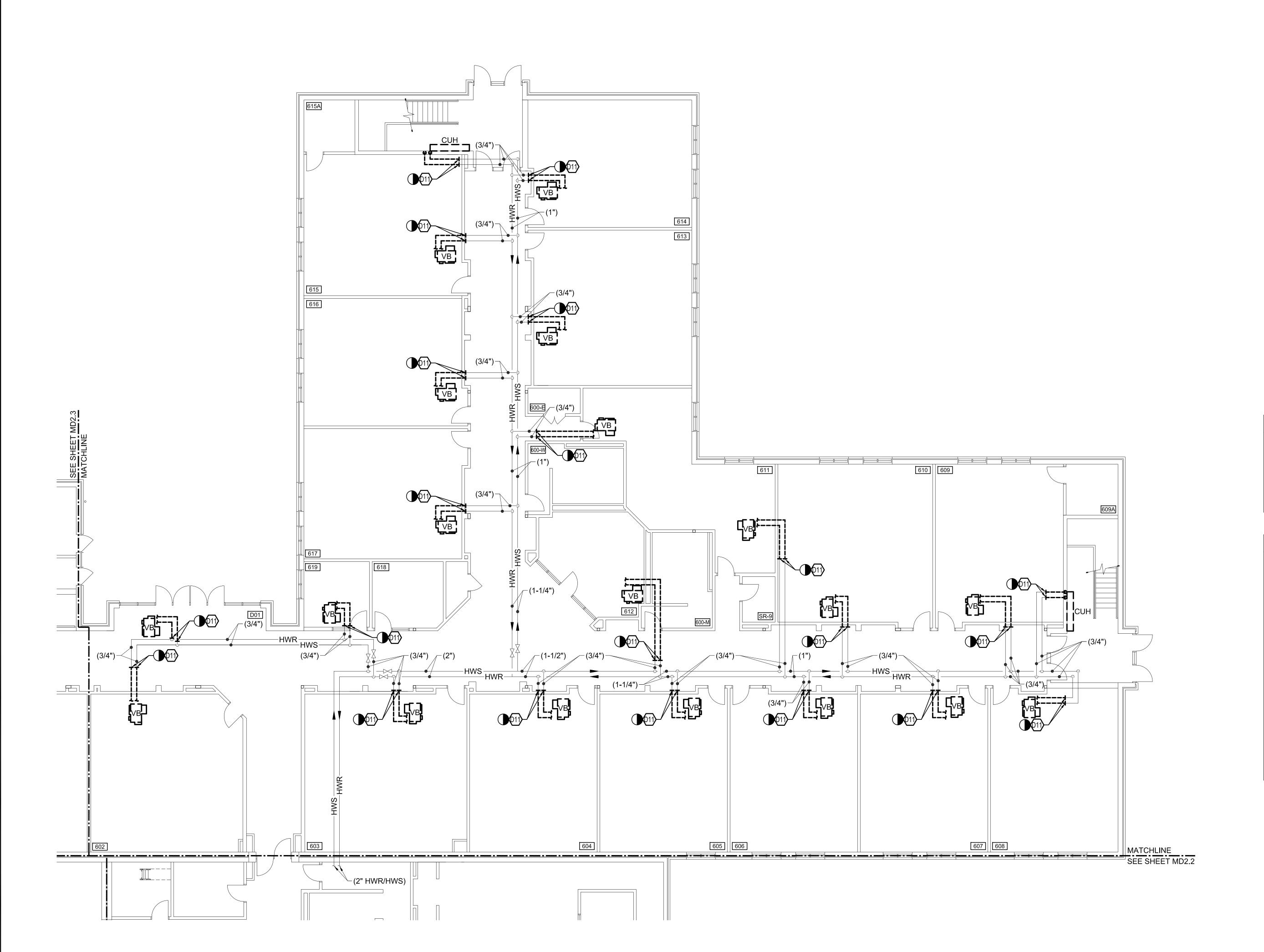
KEY PLAN


NOT TO SCALE

GE MIDI

MA

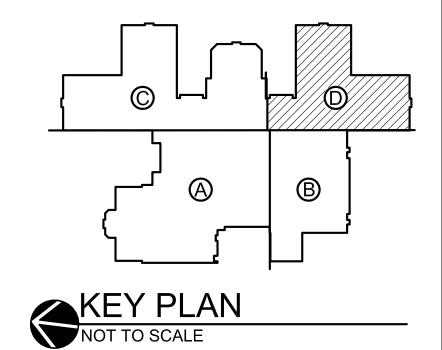
DEMOLITION NOTES DESCRIPTION ISOLATE AND DISCONNECT UNIT FROM HWR/S PIPING. REMOVE PIPING TO EXTENT REQUIRED FOR INSTALLATION OF NEW WORK.



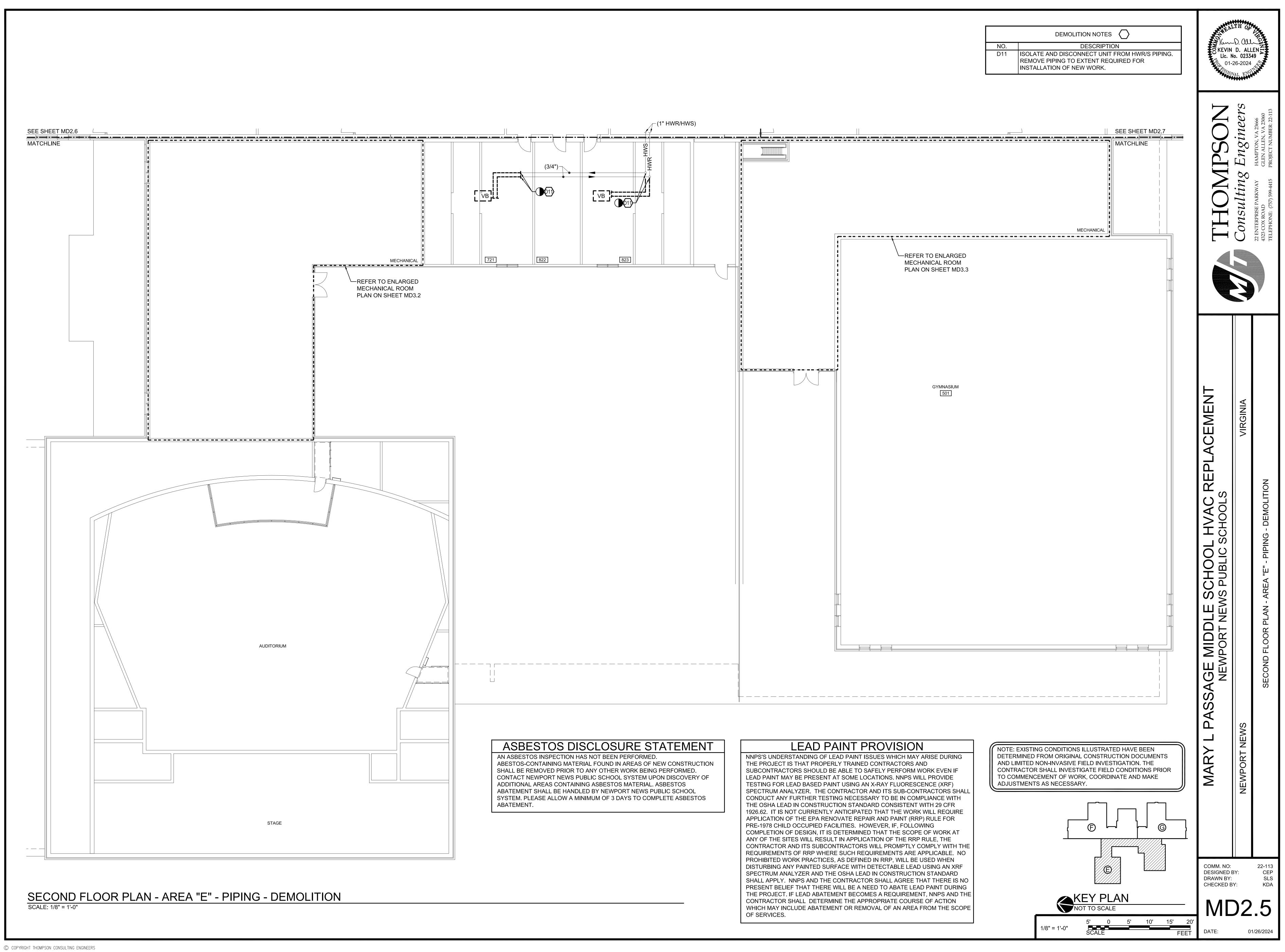
ACEMEN

GE MIDDLE SON NEWPORT NEWS

MAR

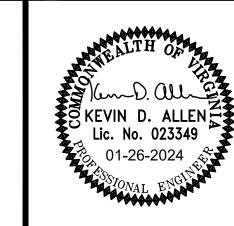

ASBESTOS DISCLOSURE STATEMENT

AN ASBESTOS INSPECTION HAS NOT BEEN PERFORMED. ABESTOS-CONTAINING MATERIAL FOUND IN AREAS OF NEW CONSTRUCTION SHALL BE REMOVED PRIOR TO ANY OTHER WORK BEING PERFORMED. CONTACT NEWPORT NEWS PUBLIC SCHOOL SYSTEM UPON DISCOVERY OF ADDITIONAL AREAS CONTAINING ASBESTOS MATERIAL. ASBESTOS ABATEMENT SHALL BE HANDLED BY NEWPORT NEWS PUBLIC SCHOOL SYSTEM. PLEASE ALLOW A MINIMUM OF 3 DAYS TO COMPLETE ASBESTOS ABATEMENT.


LEAD PAINT PROVISION

NNPS'S UNDERSTANDING OF LEAD PAINT ISSUES WHICH MAY ARISE DURING THE PROJECT IS THAT PROPERLY TRAINED CONTRACTORS AND SUBCONTRACTORS SHOULD BE ABLE TO SAFELY PERFORM WORK EVEN IF LEAD PAINT MAY BE PRESENT AT SOME LOCATIONS. NNPS WILL PROVIDE TESTING FOR LEAD BASED PAINT USING AN X-RAY FLUORESCENCE (XRF) SPECTRUM ANALYZER. THE CONTRACTOR AND ITS SUB-CONTRACTORS SHALI CONDUCT ANY FURTHER TESTING NECESSARY TO BE IN COMPLIANCE WITH THE OSHA LEAD IN CONSTRUCTION STANDARD CONSISTENT WITH 29 CFR 1926.62. IT IS NOT CURRENTLY ANTICIPATED THAT THE WORK WILL REQUIRE APPLICATION OF THE EPA RENOVATE REPAIR AND PAINT (RRP) RULE FOR PRE-1978 CHILD OCCUPIED FACILITIES. HOWEVER, IF, FOLLOWING COMPLETION OF DESIGN, IT IS DETERMINED THAT THE SCOPE OF WORK AT ANY OF THE SITES WILL RESULT IN APPLICATION OF THE RRP RULE, THE CONTRACTOR AND ITS SUBCONTRACTORS WILL PROMPTLY COMPLY WITH THE REQUIREMENTS OF RRP WHERE SUCH REQUIREMENTS ARE APPLICABLE. NO PROHIBITED WORK PRACTICES, AS DEFINED IN RRP, WILL BE USED WHEN DISTURBING ANY PAINTED SURFACE WITH DETECTABLE LEAD USING AN XRF SPECTRUM ANALYZER AND THE OSHA LEAD IN CONSTRUCTION STANDARD SHALL APPLY. NNPS AND THE CONTRACTOR SHALL AGREE THAT THERE IS NO PRESENT BELIEF THAT THERE WILL BE A NEED TO ABATE LEAD PAINT DURING THE PROJECT. IF LEAD ABATEMENT BECOMES A REQUIREMENT, NNPS AND THE CONTRACTOR SHALL DETERMINE THE APPROPRIATE COURSE OF ACTION WHICH MAY INCLUDE ABATEMENT OR REMOVAL OF AN AREA FROM THE SCOPE OF SERVICES.

> NOTE: EXISTING CONDITIONS ILLUSTRATED HAVE BEEN DETERMINED FROM ORIGINAL CONSTRUCTION DOCUMENTS AND LIMITED NON-INVASIVE FIELD INVESTIGATION. THE CONTRACTOR SHALL INVESTIGATE FIELD CONDITIONS PRIOR TO COMMENCEMENT OF WORK, COORDINATE AND MAKE ADJUSTMENTS AS NECESSARY.



FIRST FLOOR PLAN - AREA "D" - PIPING - DEMOLITION

ASBESTOS DISCLOSURE STATEMENT DEMOLITION NOTES (AN ASBESTOS INSPECTION HAS NOT BEEN PERFORMED. DESCRIPTION KEVIN D. ALLEN ABESTOS-CONTAINING MATERIAL FOUND IN AREAS OF NEW CONSTRUCTION ISOLATE AND DISCONNECT UNIT FROM HWR/S PIPING. Lic. No. 023349 SHALL BE REMOVED PRIOR TO ANY OTHER WORK BEING PERFORMED. REMOVE PIPING TO EXTENT REQUIRED FOR 01-26-2024 CONTACT NEWPORT NEWS PUBLIC SCHOOL SYSTEM UPON DISCOVERY OF INSTALLATION OF NEW WORK. ADDITIONAL AREAS CONTAINING ASBESTOS MATERIAL. ASBESTOS ABATEMENT SHALL BE HANDLED BY NEWPORT NEWS PUBLIC SCHOOL SYSTEM. PLEASE ALLOW A MINIMUM OF 3 DAYS TO COMPLETE ASBESTOS ABATEMENT. LEAD PAINT PROVISION NNPS'S UNDERSTANDING OF LEAD PAINT ISSUES WHICH MAY ARISE DURING THE PROJECT IS THAT PROPERLY TRAINED CONTRACTORS AND SUBCONTRACTORS SHOULD BE ABLE TO SAFELY PERFORM WORK EVEN IF LEAD PAINT MAY BE PRESENT AT SOME LOCATIONS. NNPS WILL PROVIDE TESTING FOR LEAD BASED PAINT USING AN X-RAY FLUORESCENCE (XRF) SPECTRUM ANALYZER. THE CONTRACTOR AND ITS SUB-CONTRACTORS SHALL CONDUCT ANY FURTHER TESTING NECESSARY TO BE IN COMPLIANCE WITH THE OSHA LEAD IN CONSTRUCTION STANDARD CONSISTENT WITH 29 CFR 1926.62. IT IS NOT CURRENTLY ANTICIPATED THAT THE WORK WILL REQUIRE APPLICATION OF THE EPA RENOVATE REPAIR AND PAINT (RRP) RULE FOR PRE-1978 CHILD OCCUPIED FACILITIES. HOWEVER, IF, FOLLOWING COMPLETION OF DESIGN, IT IS DETERMINED THAT THE SCOPE OF WORK AT ANY OF THE SITES WILL RESULT IN APPLICATION OF THE RRP RULE, THE CONTRACTOR AND ITS SUBCONTRACTORS WILL PROMPTLY COMPLY WITH THE REQUIREMENTS OF RRP WHERE SUCH REQUIREMENTS ARE APPLICABLE. NO PROHIBITED WORK PRACTICES, AS DEFINED IN RRP, WILL BE USED WHEN DISTURBING ANY PAINTED SURFACE WITH DETECTABLE LEAD USING AN XRF SPECTRUM ANALYZER AND THE OSHA LEAD IN CONSTRUCTION STANDARD SHALL APPLY. NNPS AND THE CONTRACTOR SHALL AGREE THAT THERE IS NO PRESENT BELIEF THAT THERE WILL BE A NEED TO ABATE LEAD PAINT DURING THE PROJECT. IF LEAD ABATEMENT BECOMES A REQUIREMENT, NNPS AND THE CONTRACTOR SHALL DETERMINE THE APPROPRIATE COURSE OF ACTION WHICH MAY INCLUDE ABATEMENT OR REMOVAL OF AN AREA FROM THE SCOPE OF SERVICES. /----ACEMEN 709 710 NOTE: EXISTING CONDITIONS ILLUSTRATED HAVE BEEN DETERMINED FROM ORIGINAL CONSTRUCTION DOCUMENTS AND LIMITED NON-INVASIVE FIELD INVESTIGATION. THE CONTRACTOR SHALL INVESTIGATE FIELD CONDITIONS PRIOR TO COMMENCEMENT OF WORK, COORDINATE AND MAKE ADJUSTMENTS AS NECESSARY. DESIGNED BY: DRAWN BY CHECKED BY: KDA SECOND FLOOR PLAN - AREA "F" - PIPING - DEMOLITION KEY PLAN
NOT TO SCALE

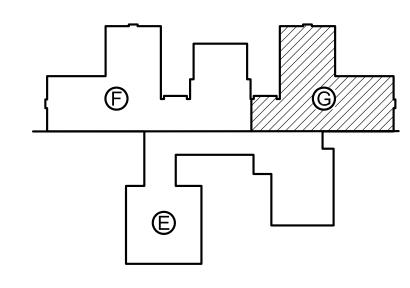
DEMOLITION NOTES DESCRIPTION ISOLATE AND DISCONNECT UNIT FROM HWR/S PIPING. REMOVE PIPING TO EXTENT REQUIRED FOR INSTALLATION OF NEW WORK.

ACEMEN

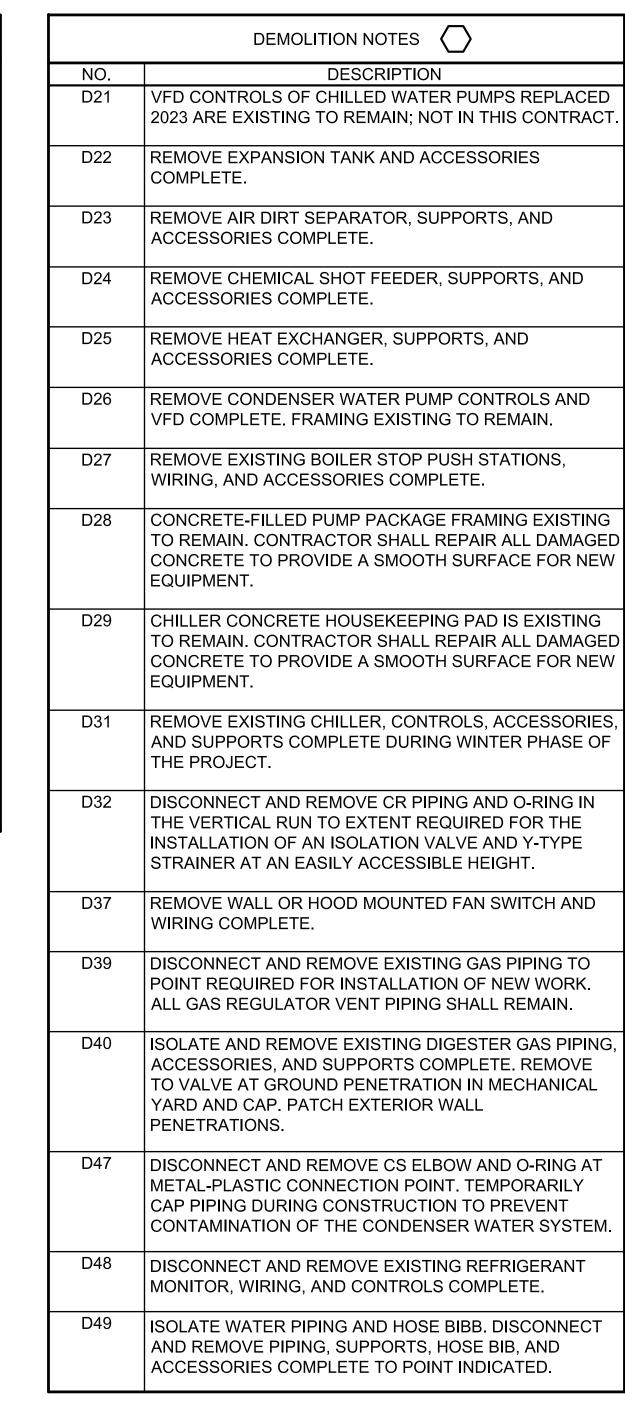
GE MIDDLE SON NEWPORT NEWS

MAR

810 809 SEE SHEET MD2.5


ASBESTOS DISCLOSURE STATEMENT

AN ASBESTOS INSPECTION HAS NOT BEEN PERFORMED. ABESTOS-CONTAINING MATERIAL FOUND IN AREAS OF NEW CONSTRUCTION SHALL BE REMOVED PRIOR TO ANY OTHER WORK BEING PERFORMED. CONTACT NEWPORT NEWS PUBLIC SCHOOL SYSTEM UPON DISCOVERY OF ADDITIONAL AREAS CONTAINING ASBESTOS MATERIAL. ASBESTOS ABATEMENT SHALL BE HANDLED BY NEWPORT NEWS PUBLIC SCHOOL SYSTEM. PLEASE ALLOW A MINIMUM OF 3 DAYS TO COMPLETE ASBESTOS


LEAD PAINT PROVISION

NNPS'S UNDERSTANDING OF LEAD PAINT ISSUES WHICH MAY ARISE DURING THE PROJECT IS THAT PROPERLY TRAINED CONTRACTORS AND SUBCONTRACTORS SHOULD BE ABLE TO SAFELY PERFORM WORK EVEN IF LEAD PAINT MAY BE PRESENT AT SOME LOCATIONS. NNPS WILL PROVIDE TESTING FOR LEAD BASED PAINT USING AN X-RAY FLUORESCENCE (XRF) SPECTRUM ANALYZER. THE CONTRACTOR AND ITS SUB-CONTRACTORS SHALI CONDUCT ANY FURTHER TESTING NECESSARY TO BE IN COMPLIANCE WITH THE OSHA LEAD IN CONSTRUCTION STANDARD CONSISTENT WITH 29 CFR 1926.62. IT IS NOT CURRENTLY ANTICIPATED THAT THE WORK WILL REQUIRE APPLICATION OF THE EPA RENOVATE REPAIR AND PAINT (RRP) RULE FOR PRE-1978 CHILD OCCUPIED FACILITIES. HOWEVER, IF, FOLLOWING COMPLETION OF DESIGN, IT IS DETERMINED THAT THE SCOPE OF WORK AT ANY OF THE SITES WILL RESULT IN APPLICATION OF THE RRP RULE, THE CONTRACTOR AND ITS SUBCONTRACTORS WILL PROMPTLY COMPLY WITH THE REQUIREMENTS OF RRP WHERE SUCH REQUIREMENTS ARE APPLICABLE. NO PROHIBITED WORK PRACTICES, AS DEFINED IN RRP, WILL BE USED WHEN DISTURBING ANY PAINTED SURFACE WITH DETECTABLE LEAD USING AN XRF SPECTRUM ANALYZER AND THE OSHA LEAD IN CONSTRUCTION STANDARD SHALL APPLY. NNPS AND THE CONTRACTOR SHALL AGREE THAT THERE IS NO PRESENT BELIEF THAT THERE WILL BE A NEED TO ABATE LEAD PAINT DURING THE PROJECT. IF LEAD ABATEMENT BECOMES A REQUIREMENT, NNPS AND THE CONTRACTOR SHALL DETERMINE THE APPROPRIATE COURSE OF ACTION WHICH MAY INCLUDE ABATEMENT OR REMOVAL OF AN AREA FROM THE SCOPE OF SERVICES.

> NOTE: EXISTING CONDITIONS ILLUSTRATED HAVE BEEN DETERMINED FROM ORIGINAL CONSTRUCTION DOCUMENTS AND LIMITED NON-INVASIVE FIELD INVESTIGATION. THE CONTRACTOR SHALL INVESTIGATE FIELD CONDITIONS PRIOR TO COMMENCEMENT OF WORK, COORDINATE AND MAKE ADJUSTMENTS AS NECESSARY.

KEY PLAN
NOT TO SCALE

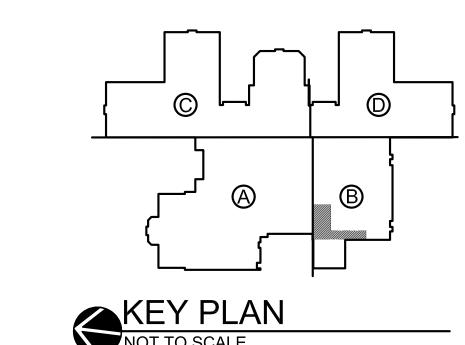
- (48"/12") (1048) EXISTING REFRIGERANT MONITOR ASBESTOS DISCLOSURE STATEMENT

TO EXISTING GAS

METER TO REMAIN

P-7 MD5.1

—COLD WATER


MAKE-UP

AN ASBESTOS INSPECTION HAS NOT BEEN PERFORMED SHALL BE REMOVED PRIOR TO ANY OTHER WORK BEING PERFORMED. CONTACT NEWPORT NEWS PUBLIC SCHOOL SYSTEM UPON DISCOVERY OF ADDITIONAL AREAS CONTAINING ASBESTOS MATERIAL. ASBESTOS ABATEMENT SHALL BE HANDLED BY NEWPORT NEWS PUBLIC SCHOOL SYSTEM. PLEASE ALLOW A MINIMUM OF 3 DAYS TO COMPLETE ASBESTOS

LEAD PAINT PROVISION

NNPS'S UNDERSTANDING OF LEAD PAINT ISSUES WHICH MAY ARISE DURING THE PROJECT IS THAT PROPERLY TRAINED CONTRACTORS AND SUBCONTRACTORS SHOULD BE ABLE TO SAFELY PERFORM WORK EVEN IF LEAD PAINT MAY BE PRESENT AT SOME LOCATIONS. NNPS WILL PROVIDE TESTING FOR LEAD BASED PAINT USING AN X-RAY FLUORESCENCE (XRF) SPECTRUM ANALYZER. THE CONTRACTOR AND ITS SUB-CONTRACTORS SHALL CONDUCT ANY FURTHER TESTING NECESSARY TO BE IN COMPLIANCE WITH THE OSHA LEAD IN CONSTRUCTION STANDARD CONSISTENT WITH 29 CFR 1926.62. IT IS NOT CURRENTLY ANTICIPATED THAT THE WORK WILL REQUIRE APPLICATION OF THE EPA RENOVATE REPAIR AND PAINT (RRP) RULE FOR PRE-1978 CHILD OCCUPIED FACILITIES. HOWEVER, IF, FOLLOWING COMPLETION OF DESIGN, IT IS DETERMINED THAT THE SCOPE OF WORK AT ANY OF THE SITES WILL RESULT IN APPLICATION OF THE RRP RULE, THE CONTRACTOR AND ITS SUBCONTRACTORS WILL PROMPTLY COMPLY WITH THE REQUIREMENTS OF RRP WHERE SUCH REQUIREMENTS ARE APPLICABLE. NO PROHIBITED WORK PRACTICES, AS DEFINED IN RRP, WILL BE USED WHEN DISTURBING ANY PAINTED SURFACE WITH DETECTABLE LEAD USING AN XRF SPECTRUM ANALYZER AND THE OSHA LEAD IN CONSTRUCTION STANDARD SHALL APPLY. NNPS AND THE CONTRACTOR SHALL AGREE THAT THERE IS NO PRESENT BELIEF THAT THERE WILL BE A NEED TO ABATE LEAD PAINT DURING THE PROJECT. IF LEAD ABATEMENT BECOMES A REQUIREMENT, NNPS AND THE CONTRACTOR SHALL DETERMINE THE APPROPRIATE COURSE OF ACTION WHICH MAY INCLUDE ABATEMENT OR REMOVAL OF AN AREA FROM THE SCOPE OF SERVICES.

NOTE: EXISTING CONDITIONS ILLUSTRATED HAVE BEEN DETERMINED FROM ORIGINAL CONSTRUCTION DOCUMENTS AND LIMITED NON-INVASIVE FIELD INVESTIGATION. THE CONTRACTOR SHALL INVESTIGATE FIELD CONDITIONS PRIOR TO COMMENCEMENT OF WORK, COORDINATE AND MAKE ADJUSTMENTS AS NECESSARY

COMM NO: 22-113 **DESIGNED BY:** DRAWN BY: CHECKED BY:

SLS

KDA DATE: 01/26/2024

NOT TO SCALE

SCALE: 1/4" = 1'-0"

© COPYRIGHT THOMPSON CONSULTING ENGINEERS

MECHANICAL

TANKLESS HOT

WATER HEATERS

MECHANICAL/ELECTRICAL

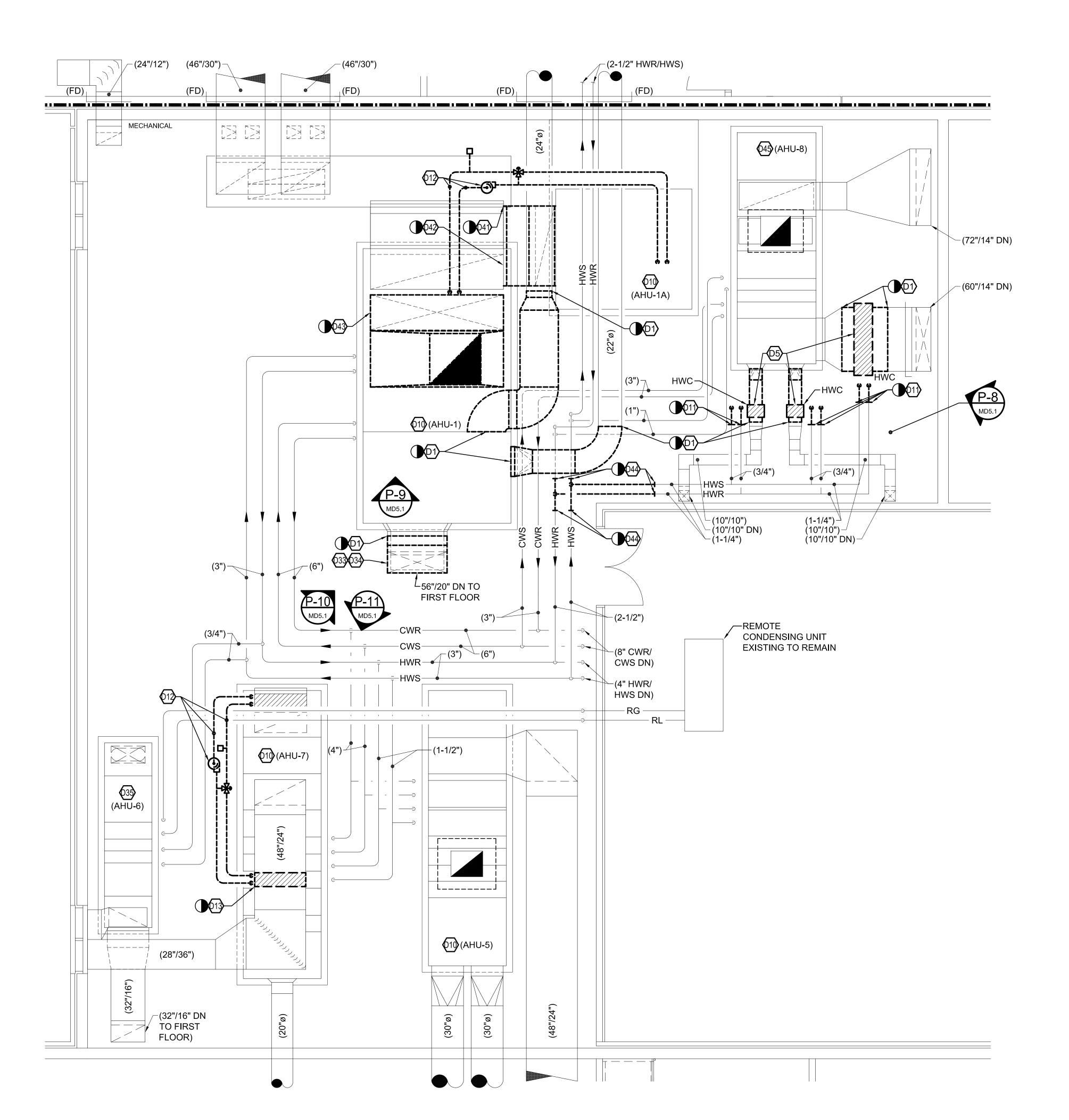
-SEE SHEET MD2.2

FOR CONTINUATION

STEEL FRAME

ENLARGED FLOOR PLAN - MECHANICAL ROOM - DEMOLITION

SM WS GE MIDDLE NEWPORT NE S 4 MA


EMEN

KEVIN D. ALLENÉ

Iti

Lic. No. 023349

01-26-2024

ENLARGED FLOOR PLAN - MECHANICAL MEZZANINE - DEMOLITION

DEMOLITION NOTES \(\sigma\)

NO. DESCRIPTION DISCONNECT AND REMOVE EXISTING DUCTWORK TO EXTENT REQUIRED TO FACILITATE INSTALLATION OF NEW WORK. TEMPORARILY COVER OPEN ENDS OF DUCTWORK WITH 6-MIL POLYETHYLENE SHEETING DURING CONSTRUCTION. PROVIDE TEMPORARY SUPPORTS FOR REMAINING DUCTWORK WHERE REMOVAL OF CONNECTED UNIT REQUIRES.

REMOVE DUCT MOUNTED HOT WATER COIL, CONTROLS, AND ACCESSORIES COMPLETE, REMOVE DUCTWORK TO EXTENT REQUIRED FOR INSTALLATION OF NEW

AIR HANDLING UNIT TO BE REFURBISHED. UNIT CASING EXISTING TO REMAIN. DISCONNECT AND REMOVE SUPPLY AND EXHAUST FANS AND FLEXIBLE CONNECTIONS, UNIT COILS AND COIL PIPING PACKAGES, UNIT CONTROLS, CONTROL DAMPERS AND ACTUATORS, AND ENERGY WHEELS WHERE APPLICABLE. SUPPLY FAN ISOLATED BASERAILS SHALL BE EXISTING TO REMAIN.

ISOLATE AND DISCONNECT UNIT FROM HWR/S PIPING. REMOVE PIPING TO EXTENT REQUIRED FOR INSTALLATION OF NEW WORK.

REMOVE INLINE PUMP, EXPANSION TANK, AND VALVES ASSOCIATED WITH RUNAROUND COIL TO BE REMOVED.

DISCONNECT AND REMOVE RUNAROUND COIL, PIPING, CONTROLS AND ACCESSORIES COMPLETE. REMOVE DUCTWORK TO EXTENT REQUIRED FOR REMOVAL. TEMPORARILY COVER OPEN ENDS OF DUCTWORK WITH 6-MIL POLYETHYLENE SHEETING DURING CONSTRUCTION.

WHEN DISCONNECTING DUCTWORK, MAINTAIN OWNER'S PULLEY SYSTEM FOR MAINTENANCE PURPOSES INTACT. TEMPORARILY REMOVE AND STORE DURING CONSTRUCTION.

DEMOLITION NOTES (

NO. DESCRIPTION REMOVE DUCTWORK THROUGH FLOOR TO FIRST FLOOR.

D35 UNIT TO BE REPLACED SEPARATELY. NOT IN THIS CONTRACT.

DISCONNECT AND REMOVE EXHAUST DUCTWORK BETWEEN UNITS AHU-1 AND AHU-1A, TEMPORARILY COVER EXHAUST OPENINGS WITH 6-MIL POLYETHYLENE SHEETING DURING CONSTRUCTION.

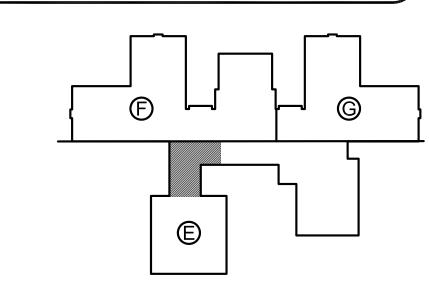
REMOVE SIDE PANEL OF AHU-1 EXHAUST SECTION BETWEEN AHU-1 AND AHU-1A UNITS. TEMPORARILY COVER OPENING WITH 6-MIL POLYETHYLENE SHEETING DURING CONSTRUCTION.

DISCONNECT AND REMOVE DAMAGED PORTION OF OUTSIDE AIR DUCTWORK, TEMPORARILY COVER OPENING WITH 6-MIL POLYETHYLENE SHEETING DURING CONSTRUCTION.

DISCONNECT AND REMOVE PORTION OF HWR/S PIPING REQUIRED FOR THE ADJUSTMENT OF BRANCH CONNECTION TO COME OFF OF THE BOTTOM OF THE MAIN PIPES.

AIR HANDLING UNIT TO BE REFURBISHED. UNIT CASING EXISTING TO REMAIN, DISCONNECT AND REMOVE EXHAUST FANS, UNIT COILS AND COIL PIPING PACKAGES, UNIT CONTROLS, CONTROL DAMPERS, AND ACTUATORS. SUPPLY FANS PREVIOUSLY REPLACED BY OWNER AND ARE NOT IN SCOPE OF THIS PROJECT.

KEVIN D. ALLEN Lic. No. 023349 01-26-2024 ngineer Iti


ASBESTOS DISCLOSURE STATEMENT

AN ASBESTOS INSPECTION HAS NOT BEEN PERFORMED. ABESTOS-CONTAINING MATERIAL FOUND IN AREAS OF NEW CONSTRUCTION SHALL BE REMOVED PRIOR TO ANY OTHER WORK BEING PERFORMED. CONTACT NEWPORT NEWS PUBLIC SCHOOL SYSTEM UPON DISCOVERY OF ADDITIONAL AREAS CONTAINING ASBESTOS MATERIAL. ASBESTOS ABATEMENT SHALL BE HANDLED BY NEWPORT NEWS PUBLIC SCHOOL SYSTEM. PLEASE ALLOW A MINIMUM OF 3 DAYS TO COMPLETE ASBESTOS ABATEMENT.

LEAD PAINT PROVISION

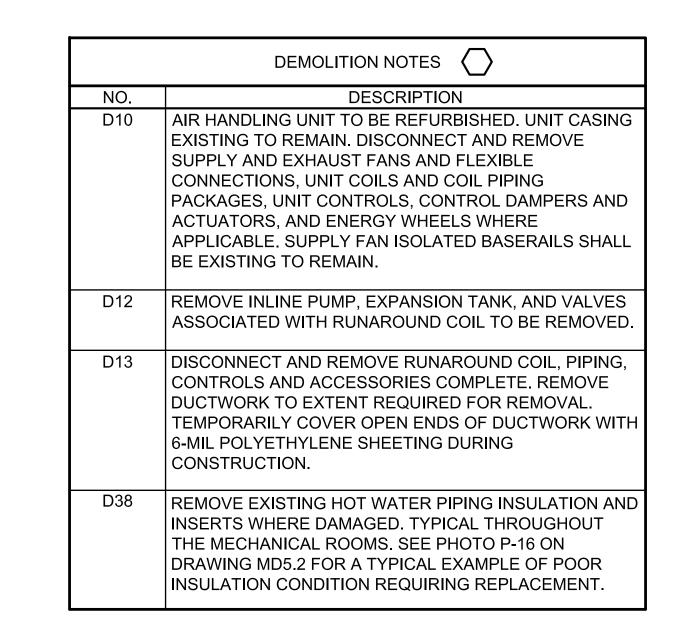
NNPS'S UNDERSTANDING OF LEAD PAINT ISSUES WHICH MAY ARISE DURING THE PROJECT IS THAT PROPERLY TRAINED CONTRACTORS AND SUBCONTRACTORS SHOULD BE ABLE TO SAFELY PERFORM WORK EVEN IF LEAD PAINT MAY BE PRESENT AT SOME LOCATIONS. NNPS WILL PROVIDE TESTING FOR LEAD BASED PAINT USING AN X-RAY FLUORESCENCE (XRF SPECTRUM ANALYZER. THE CONTRACTOR AND ITS SUB-CONTRACTORS SHAL CONDUCT ANY FURTHER TESTING NECESSARY TO BE IN COMPLIANCE WITH THE OSHA LEAD IN CONSTRUCTION STANDARD CONSISTENT WITH 29 CFR 1926.62. IT IS NOT CURRENTLY ANTICIPATED THAT THE WORK WILL REQUIRE APPLICATION OF THE EPA RENOVATE REPAIR AND PAINT (RRP) RULE FOR PRE-1978 CHILD OCCUPIED FACILITIES. HOWEVER, IF, FOLLOWING COMPLETION OF DESIGN, IT IS DETERMINED THAT THE SCOPE OF WORK AT ANY OF THE SITES WILL RESULT IN APPLICATION OF THE RRP RULE, THE CONTRACTOR AND ITS SUBCONTRACTORS WILL PROMPTLY COMPLY WITH THI REQUIREMENTS OF RRP WHERE SUCH REQUIREMENTS ARE APPLICABLE. NO PROHIBITED WORK PRACTICES, AS DEFINED IN RRP, WILL BE USED WHEN DISTURBING ANY PAINTED SURFACE WITH DETECTABLE LEAD USING AN XRF SPECTRUM ANALYZER AND THE OSHA LEAD IN CONSTRUCTION STANDARD SHALL APPLY. NNPS AND THE CONTRACTOR SHALL AGREE THAT THERE IS NO PRESENT BELIEF THAT THERE WILL BE A NEED TO ABATE LEAD PAINT DURING THE PROJECT. IF LEAD ABATEMENT BECOMES A REQUIREMENT, NNPS AND THE CONTRACTOR SHALL DETERMINE THE APPROPRIATE COURSE OF ACTION WHICH MAY INCLUDE ABATEMENT OR REMOVAL OF AN AREA FROM THE SCOPE OF SERVICES.

> NOTE: EXISTING CONDITIONS ILLUSTRATED HAVE BEEN DETERMINED FROM ORIGINAL CONSTRUCTION DOCUMENTS AND LIMITED NON-INVASIVE FIELD INVESTIGATION. THE CONTRACTOR SHALL INVESTIGATE FIELD CONDITIONS PRIOR TO COMMENCEMENT OF WORK, COORDINATE AND MAKE ADJUSTMENTS AS NECESSARY.

KEY PLAN

DESIGNED BY: DRAWN BY: CHECKED BY:

01/26/2024


© COPYRIGHT THOMPSON CONSULTING ENGINEERS

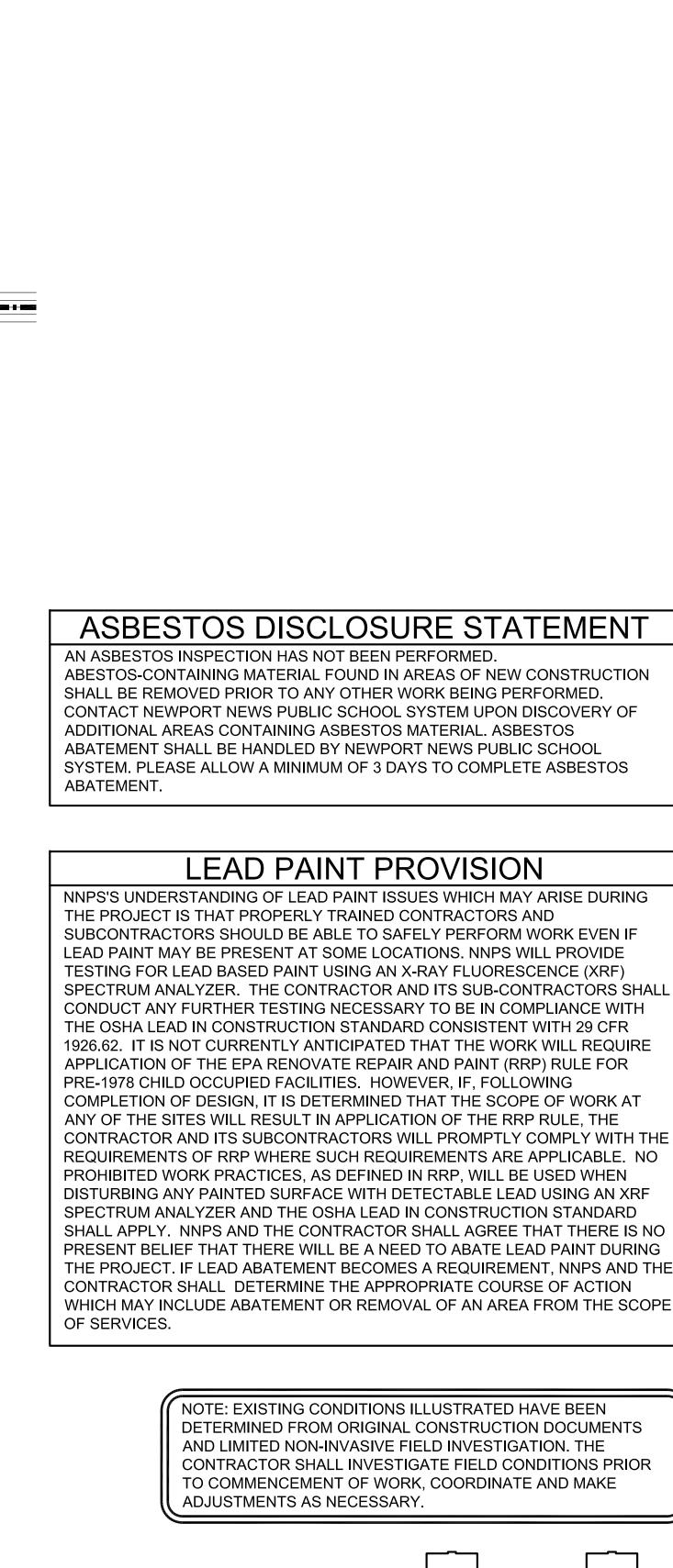
EMEN

EWPOR

 \geq

KDA

ACEMEN


CHOOL I GE MIDI

MAI

KEY PLAN

NOT TO SCALE

DESIGNED BY: CHECKED BY:

-(36"/16" UP FROM 1ST FLOOR) -(32"/20" UP FROM 1ST FLOOR)

(AHU-3)

P-15 MD5.2

MECHANICAL

(72"/24") UP-

(10**)**

-HWS--HWR-

(3/4")

-(1") DRAIN TO NEAREST

DRAIN. (TYP)

FLOOR

(90"/24")

(24"/30") UP TO—

INTAKE ON ROOF

(AHU-4)

L-----

-(6") CWR/CWS DN

TO FIRST FLOOR

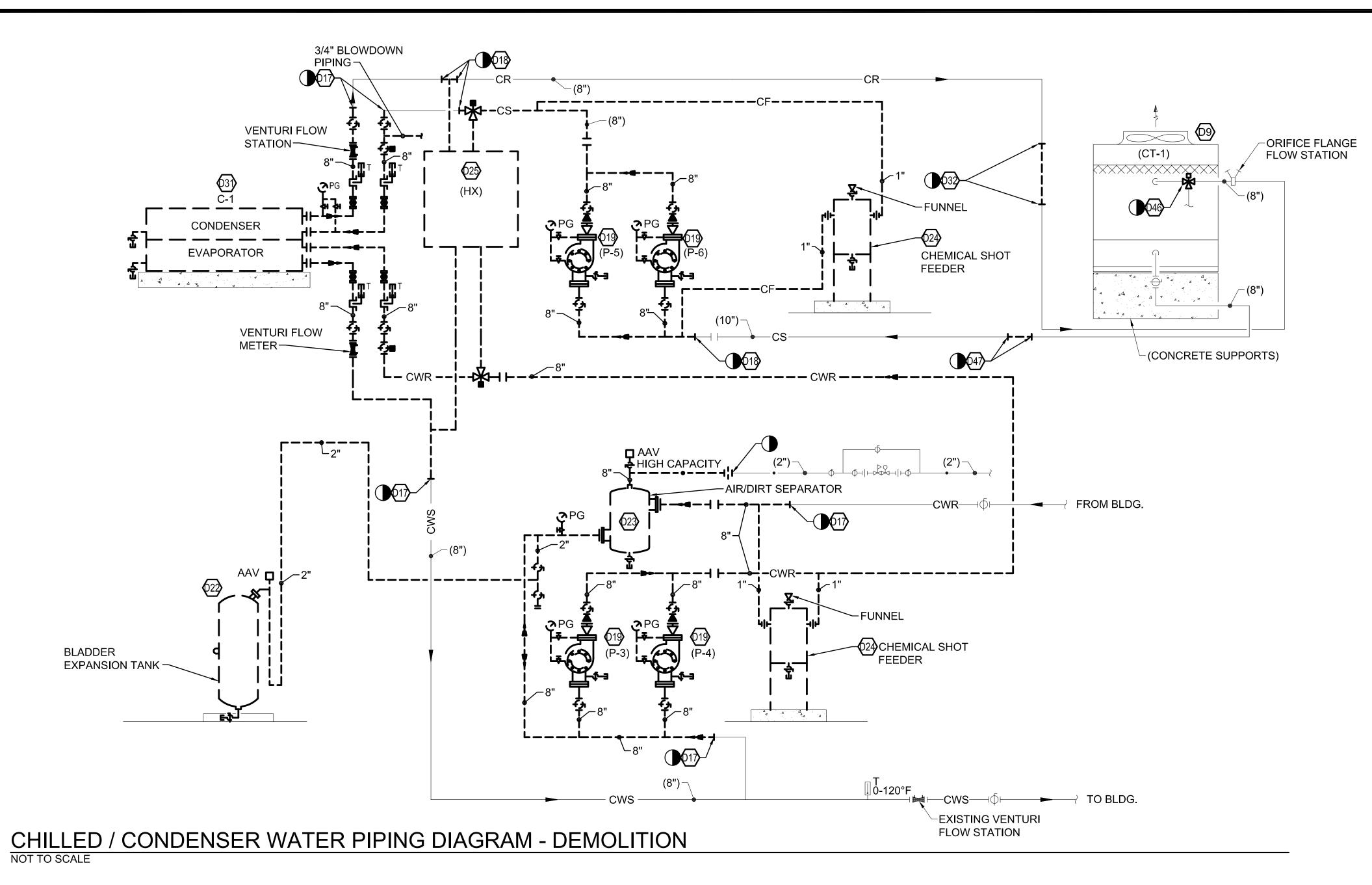
-(4") HWR/HWS DN

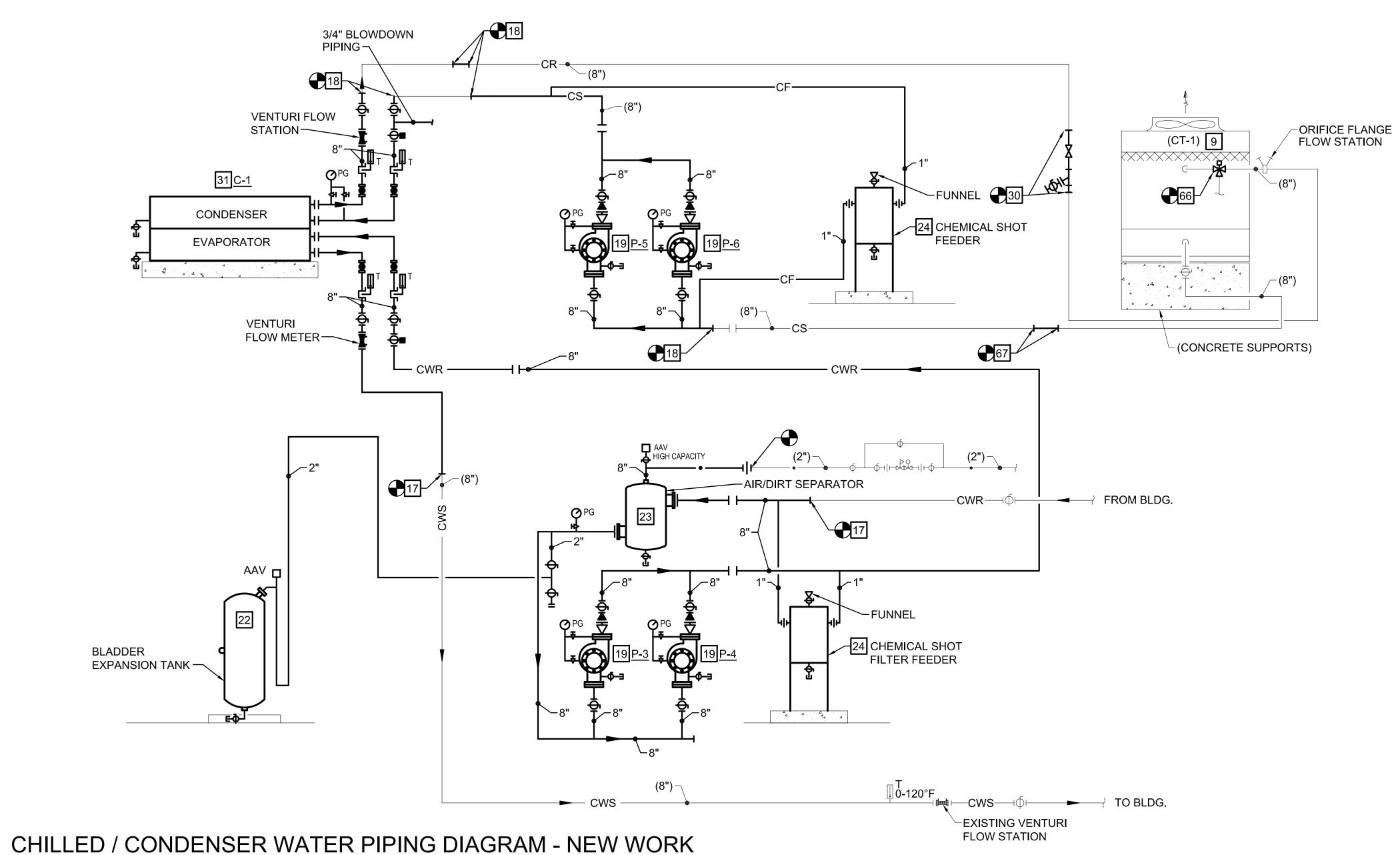
TO FIRST FLOOR

(20"/20") UP TO EF-9 ON ROOF —

-(42"/60") UP TO

INTAKE ON ROOF


-CWR--HWR—●


(24"Ø)

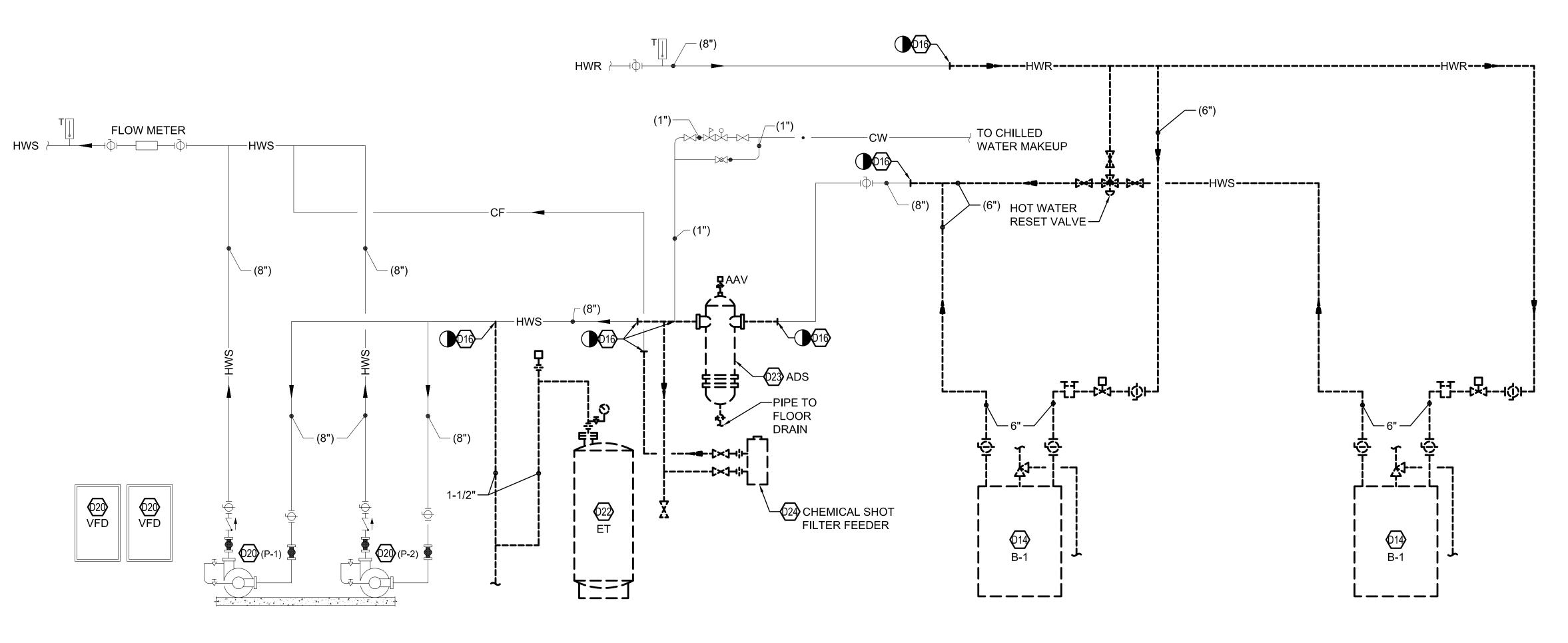
√(6")

(AHU-2)

P-14 MD5.2

	DEMOLITION NOTES
NO.	DESCRIPTION
D9	EXISTING COOLING TOWER TO REMAIN.
D17	DISCONNECT AND REMOVE EXISTING CWR/S PIPING POINT REQUIRED FOR INSTALATION OF NEW WORK.
D18	DISCONNECT AND REMOVE EXISTING CR/S PIPING TO POINT REQUIRED FOR INSTALLATION OF NEW WORK
D19	DISCONNECT AND REMOVE BASE MOUNTED SUCTION PUMP, CONTROLS, VFD, AND ACCESSORIES COMPLE EXISTING PUMP PACKAGE AND CONCRETE BASE TO REMAIN.
D22	REMOVE EXPANSION TANK AND ACCESSORIES COMPLETE.
D23	REMOVE AIR DIRT SEPARATOR, SUPPORTS, AND ACCESSORIES COMPLETE.
D24	REMOVE CHEMICAL SHOT FEEDER, SUPPORTS, AND ACCESSORIES COMPLETE.
D25	REMOVE HEAT EXCHANGER, SUPPORTS, AND ACCESSORIES COMPLETE.
D31	REMOVE EXISTING CHILLER, CONTROLS, ACCESSOR AND SUPPORTS COMPLETE DURING WINTER PHASE THE PROJECT.
D32	DISCONNECT AND REMOVE CR PIPING AND O-RING I THE VERTICAL RUN TO EXTENT REQUIRED FOR THE INSTALLATION OF AN ISOLATION VALVE AND Y-TYPE STRAINER AT AN EASILY ACCESSIBLE HEIGHT.
D46	DISCONNECT AND REMOVE THREE-WAY BALANCING VALVE AND ACTUATOR COMPLETE AT COOLING TOV BYPASS. TEMPORARILY CAP PIPING DURING CONSTRUCTION TO PREVENT CONTAMINATION OF T CONDENSER WATER SYSTEM.
D47	DISCONNECT AND REMOVE CS ELBOW AND O-RING AMETAL-PLASTIC CONNECTION POINT. TEMPORARILY CAP PIPING DURING CONSTRUCTION TO PREVENT CONTAMINATION OF THE CONDENSER WATER SYST

	NEW WORK NOTES
NO.	DESCRIPTION
9	PROVIDE AND INSTALL ROOF MOUNTED EXHAUST FAN, ACCESSORIES, AND CONTROLS COMPLETE. MOUNT ON EXISTING ROOF CURB AND EXTEND DUCTWORK OR PROVIDE CURB ADAPTER AS REQUIRED.
17	PROVIDE AND INSTALL CWR/S PIPING, ACCESSORIES, AND SUPPORTS COMPLETE. CONNECT TO EXISTING PIPING WHERE INDICATED. CHECK VICTAULIC CONNECTIONS IN CWR/S PIPING THROUGHOUT BUILDING. WHERE LEAKING OCCURS, REMOVE FITTING AND REPLACE WITH WELDED IN SPOOL PIECES. ALL NEW CWR/S PIPING SHALL BE WELDED.
18	PROVIDE AND INSTALL CR/S PIPING, ACCESSORIES, AND SUPPORTS COMPLETE. CONNECT TO EXISTING PIPING WHERE INDICATED. CHECK VICTAULIC CONNECTIONS IN CR/S PIPING THROUGHOUT BUILDING. WHERE LEAKING OCCURS, REMOVE FITTING AND REPLACE WITH WELDED IN SPOOL PIECES. ALL NEW CR/S PIPING SHALL BE WELDED.
19	PROVIDE AND INSTALL BASE MOUNTED SUCTION PUMP, CONTROLS, AND ACCESSORIES COMPLETE ON EXISTING PUMP PACKAGE BASE. NEW PUMP BASES SHALL BE GROUTED TO EXISTING PUMP PACKAGE BASE AFTER ALL CONCRETE HAS BEEN REPAIRED TO PROVIDE A SMOOTH SURFACE.
22	PROVIDE AND INSTALL NEW PRE-CHARGED BLADDER EXPANSION TANK WITH HEAVY DUTY REPLACEABLE BLADDER, RING BASE, LIFTING RINGS, AND NPT SYSTEM CONNECTION SIZED AT A MAXIMUM PRESSURE OF 125 PSI.
23	PROVIDE AND INSTALL AIR DIRT SEPARATOR, SPIROTHERM MODEL VDN OR APPROVED EQUAL SIZED TO SUPPORT THE FULL FLOW VOLUME.
24	PROVIDE AND INSTALL 5-GALLON CHEMICAL SHOT FILTER FEEDER WITH FUNNEL.
30	PROVIDE AND INSTALL ISOLATION VALVE AND Y-TYPE STRAINER WITH BLOWDOWN VALVE IN CONDENSER WATER RETURN PIPING AND NEW O-RING AT METAL TO PLASTIC CONNECTION. CONNECT TO EXISTING PIPING.
31	PROVIDE AND INSTALL CHILLER, ACCESSORIES, AND CONTROLS COMPLETE ON EXISTING CONCRETE HOUSEKEEPING PAD DURING WINTER PHASE OF PROJECT.
66	PROVIDE AND INSTALL THREE WAY VALVE, ACTUATOR, AND ACCESSORIES COMPLETE AT COOLING TOWER BYPASS.
67	PROVIDE AND INSTALL NEW CR PIPING AND O-RING AT METAL TO PLASTIC CONNECTION. CONNECT TO EXISTING PIPING WHERE INDICATED.



REPLACEMEN PASSAGE MIDDLE SCHOOL HVAC I NEWPORT NEWS PUBLIC SCHOOLS MARY

> DESIGNED BY: DRAWN BY CHECKED BY:

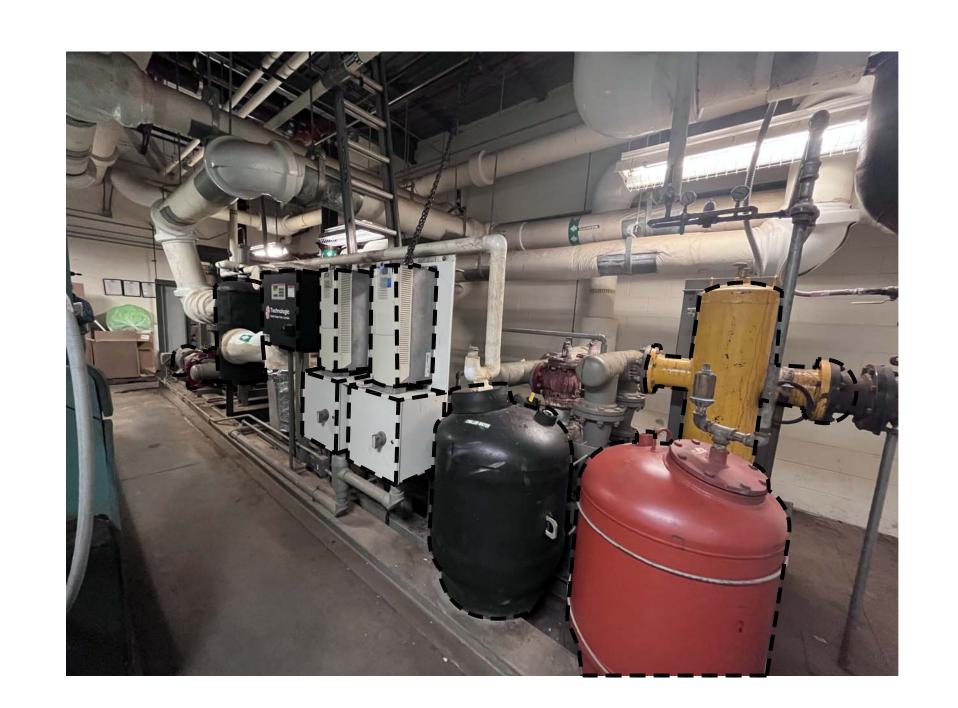
NOT TO SCALE

HOT WATER SYSTEM PIPING DIAGRAM - DEMOLITION NOT TO SCALE

HOT WATER SYSTEM PIPING DIAGRAM - NEW WORK NOT TO SCALE

	DEMOLITION NOTES
NO.	DESCRIPTION
D14	REMOVE BOILER, CONTROLS, ACCESSORIES, AND ASSOCIATED VENT THROUGH EXTERIOR WALL COMPLETE.
D16	DISCONNECT AND REMOVE EXISTING HWR/S PIPING TO POINT REQUIRED FOR INSTALLATION OF NEW WORK.
D20	HOT WATER PUMP AND VFD CONTROLS REPLACED 2023 IS EXISTING TO REMAIN; NOT IN THIS CONTRACT.
D22	REMOVE EXPANSION TANK AND ACCESSORIES COMPLETE.
D23	REMOVE AIR DIRT SEPARATOR, SUPPORTS, AND ACCESSORIES COMPLETE.
D24	REMOVE CHEMICAL SHOT FEEDER, SUPPORTS, AND ACCESSORIES COMPLETE.

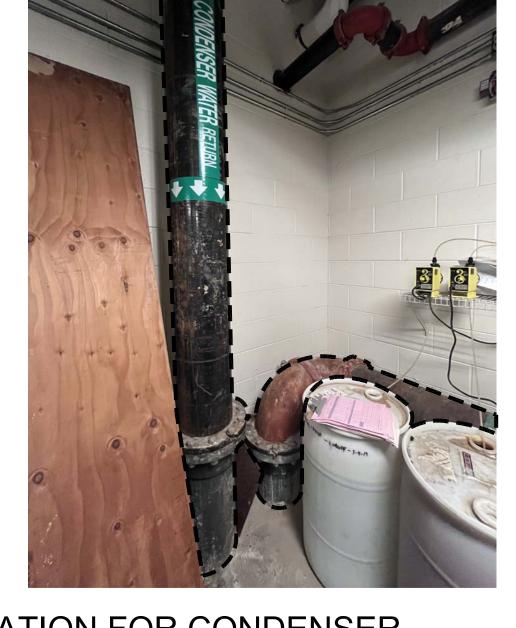
	NEW WORK NOTES
NO.	DESCRIPTION
14	PROVIDE AND INSTALL CONDENSING BOILER, FLUE PIPING THROUGH EXTERIOR WALL, CONTROLS, AND ACCESSORIES COMPLETE. PROVIDE AND INSTALL NEOPRENE ISOLATION PADS FOR BOILER MOUNTING ON HOUSEKEEPING PAD. REFER TO "BOILER VENTING DETAIL" ON DRAWING M6.2.
16	PROVIDE AND INSTALL HWR/S PIPING, ACCESSORIES, AND SUPPORTS COMPLETE. CONNECT TO EXISTING PIPING WHERE INDICATED. CHECK VICTAULIC CONNECTIONS IN HWR/S PIPING THROUGHOUT BUILDING AS TEMPERATURE IS LOWERED. WHERE LEAKING OCCURS, REMOVE FITTING AND REPLACE WITH WELDED IN SPOOL PIECES. ALL NEW HWR/S PIPING SHALL BE WELDED.
20	HOT WATER PUMP AND VFD CONTROLS REPLACED 2023 IS EXISTING TO REMAIN; NOT IN THIS CONTRACT.
22	PROVIDE AND INSTALL NEW PRE-CHARGED BLADDER EXPANSION TANK WITH HEAVY DUTY REPLACEABLE BLADDER, RING BASE, LIFTING RINGS, AND NPT SYSTEM CONNECTION SIZED AT A MAXIMUM PRESSURE OF 125 PSI.
23	PROVIDE AND INSTALL AIR DIRT SEPARATOR, SPIROTHERM MODEL VDN OR APPROVED EQUAL SIZED TO SUPPORT THE FULL FLOW VOLUME.
24	PROVIDE AND INSTALL 5-GALLON CHEMICAL SHOT FILTER FEEDER WITH FUNNEL.
42	PROVIDE NEW SCHEDULE 40 STEEL GAS PIPING. CONNECT TO EXISTING GAS PIPING AT LOCATION INDICATED.
43	PROVIDE CONDENSATE NEUTRALIZATION KIT. INSTALL IN ACCORDANCE WITH BOILER MANUFACTURER'S INSTRUCTIONS.
45	PROVIDE 8" SYSTEM STRAINER WITH 30 MESH SCREEN. "METRAFLEX" MODEL LPD OR EQUAL.


MARY L PASSAGE MIDDLE SCHOOL HVAC REPLACEMENT NEWPORT NEWS PUBLIC SCHOOLS

DESIGNED BY: CHECKED BY:

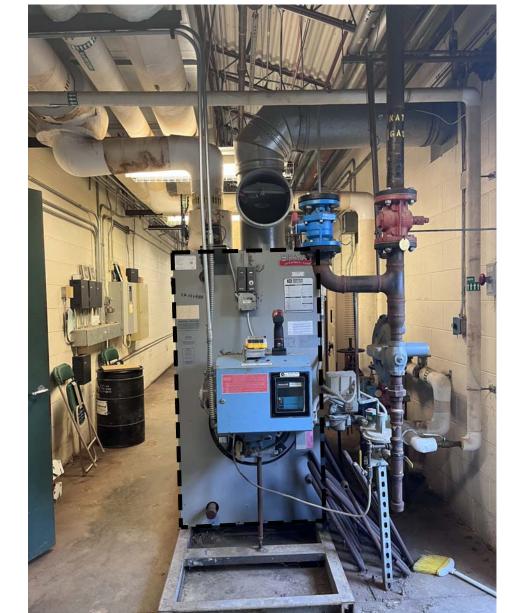
REPLACEMEN

CHECKED BY:



P2 CHILLER EXISTING CONDITIONS

LOCATION FOR CONDENSER P3 WATER ISOLATION VALVE AND STRAINER



P4 PUMP PACKAGE EXISTING CONDITIONS

MD3.1

P5 PUMP AND CHILLER ROOM EXISTING CONDITIONS

P6 BOILER EXISTING CONDITIONS

P7 BOILER EXISTING CONDITIONS
MD3.1

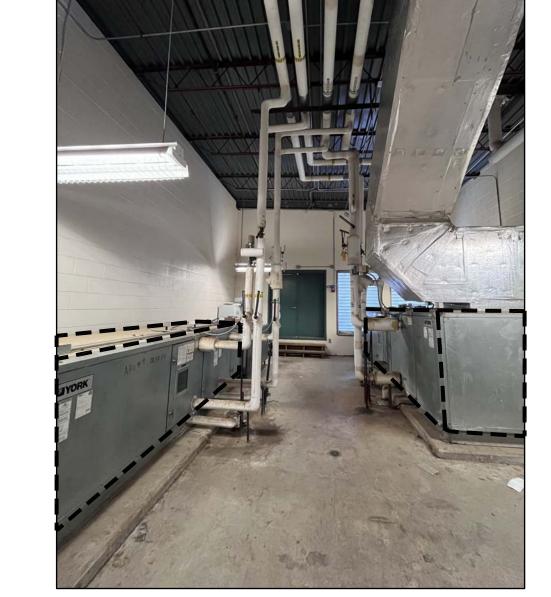
AHU-8 DUCT HOT WATER P8 COILS EXISTING CONDITIONS

MD3.2

AHU-1 FAN EXISTING CONDITIONS

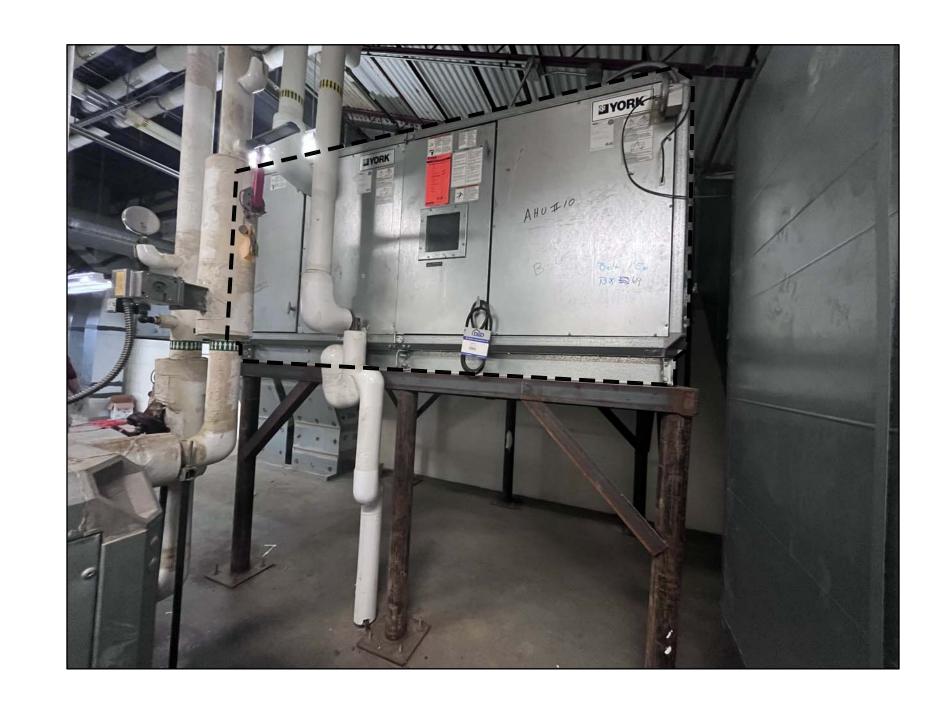
AHU-1 SUPPLY DUCT P10 EXISTING CONDITIONS

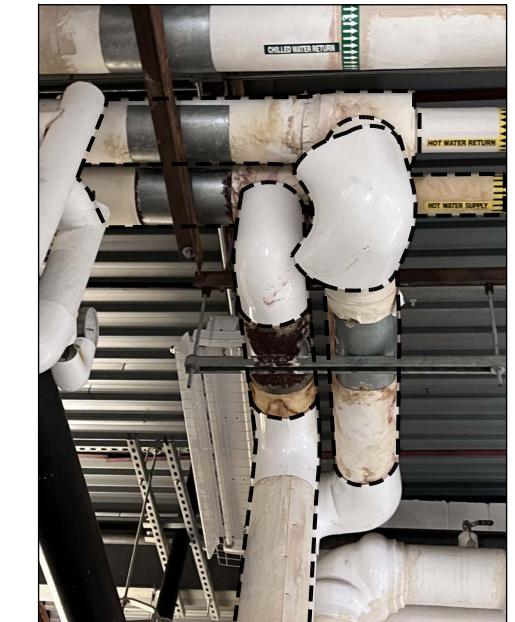
MD3.2


P11 AHU-7 EXISTING CONDITIONS

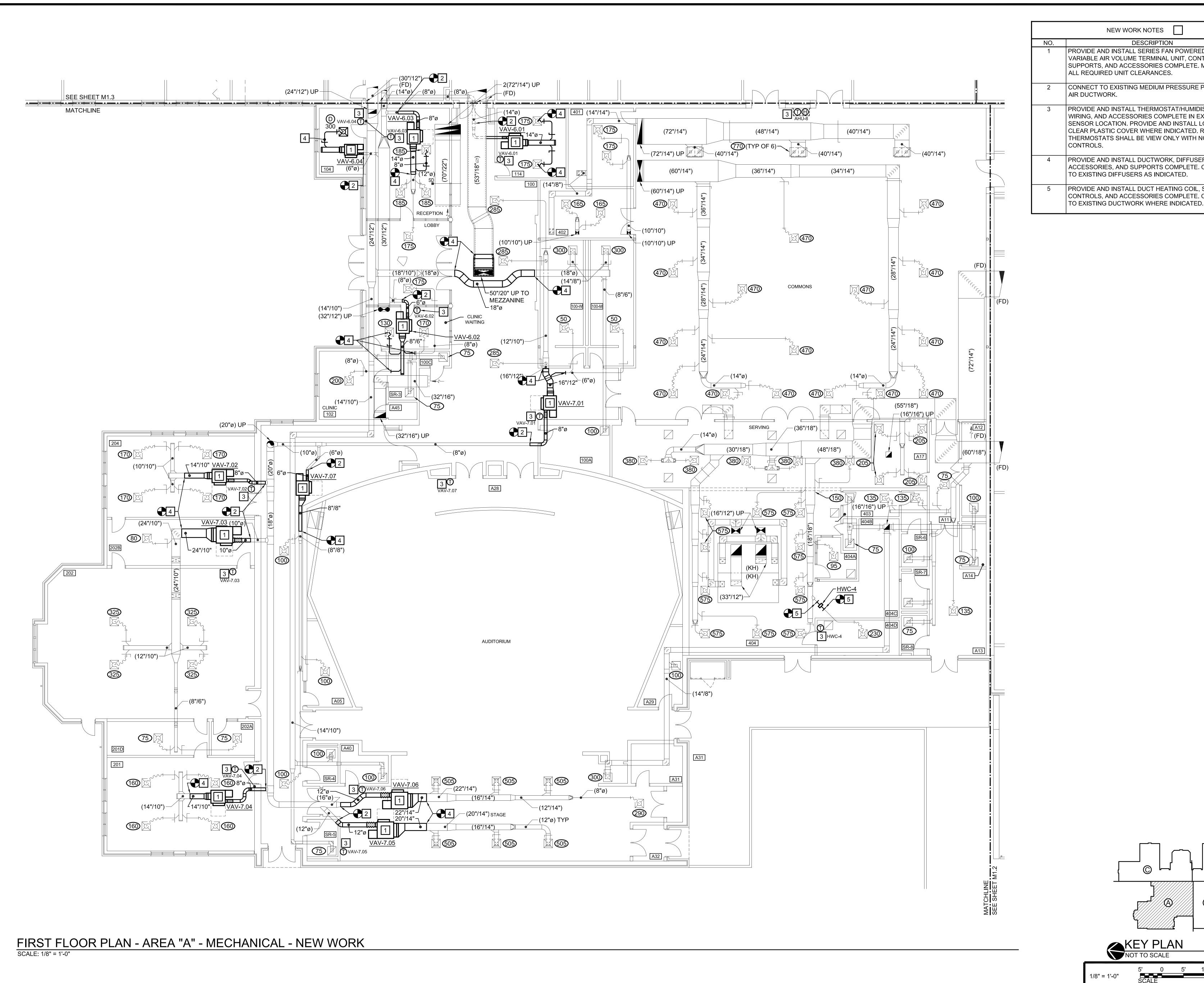
DESIGNED BY: DRAWN BY: CHECKED BY:

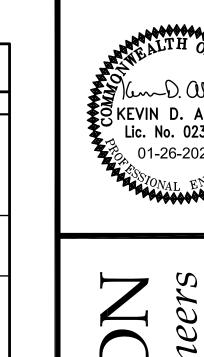
P12 AHU-2 AND AHU-2A EXISTING CONDITIONS


MD3.3



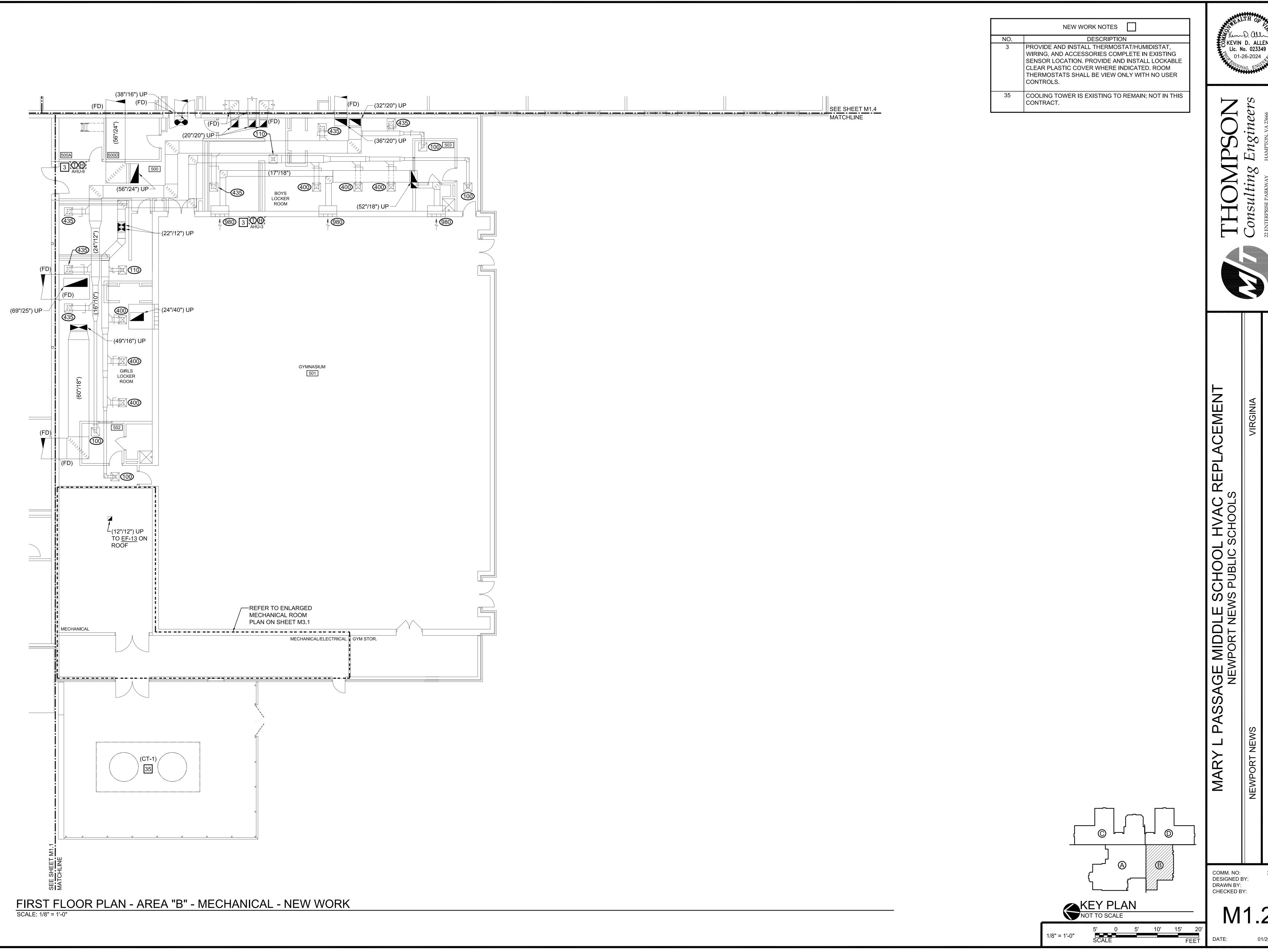
P13 AHU-4 AND AHU-9 EXISTING CONDITIONS





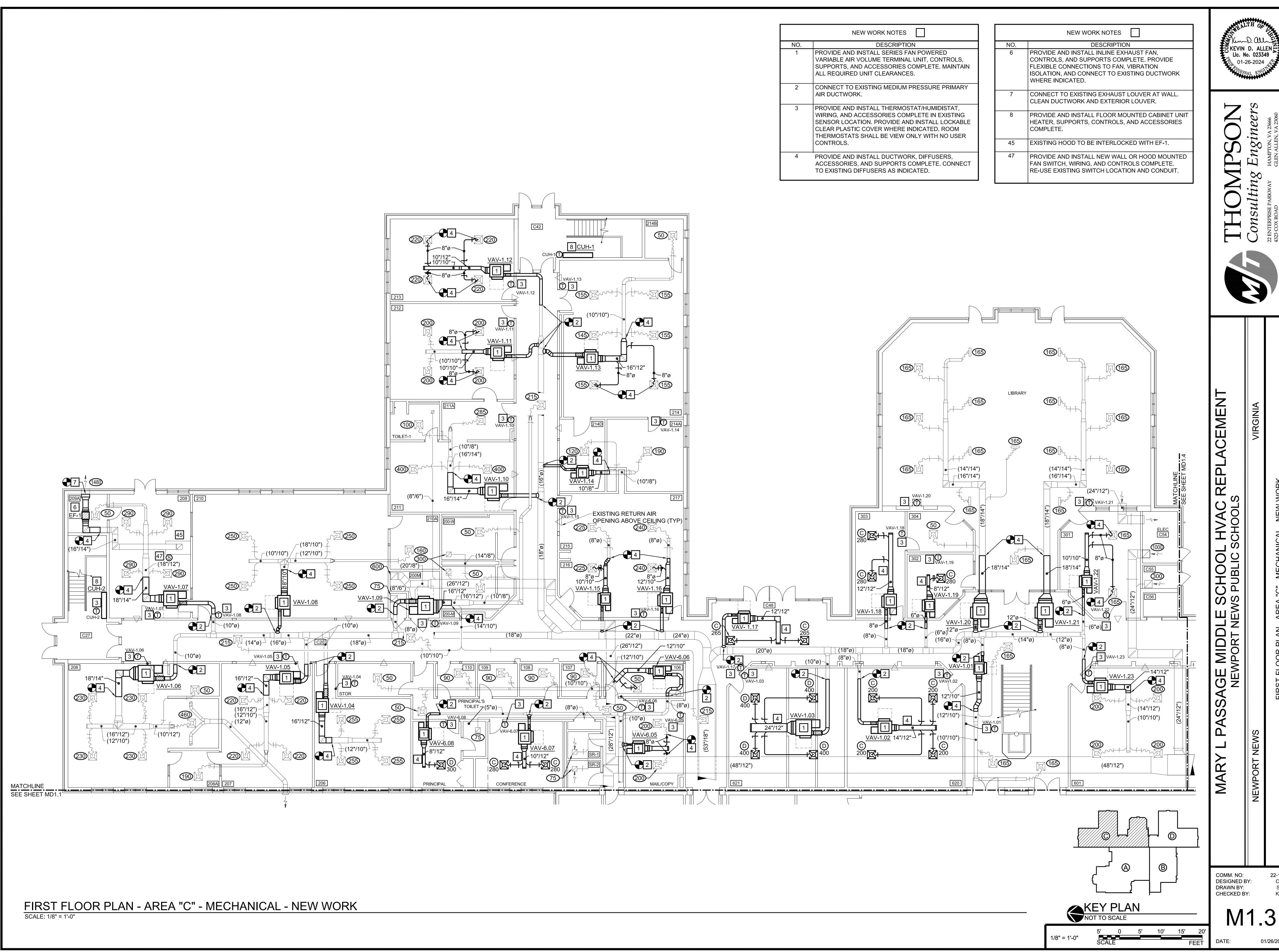
P17 COOLING TOWER EXISTING CONDITIONS

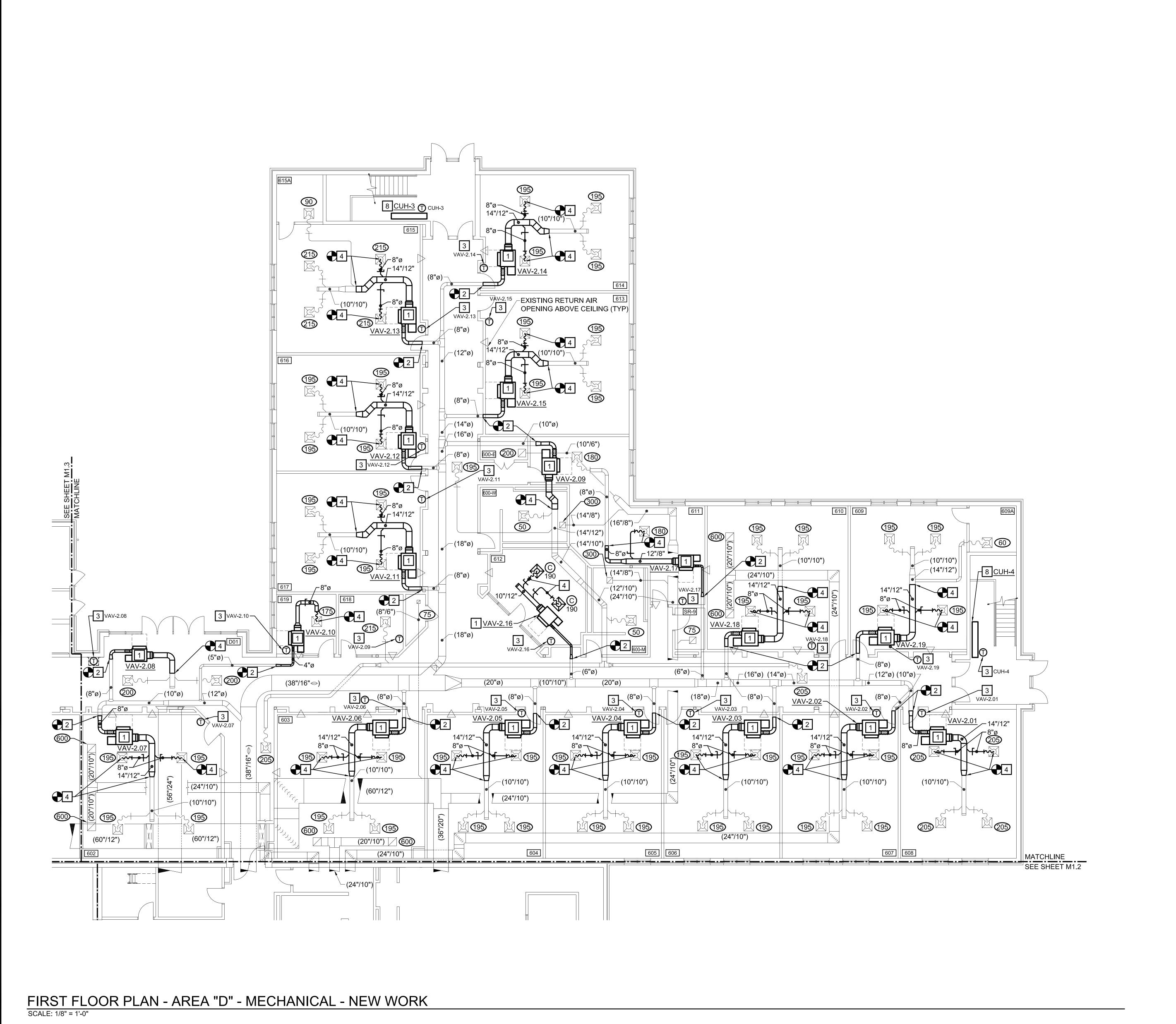
P15 AHU-10 EXISTING CONDITIONS
MD3.3

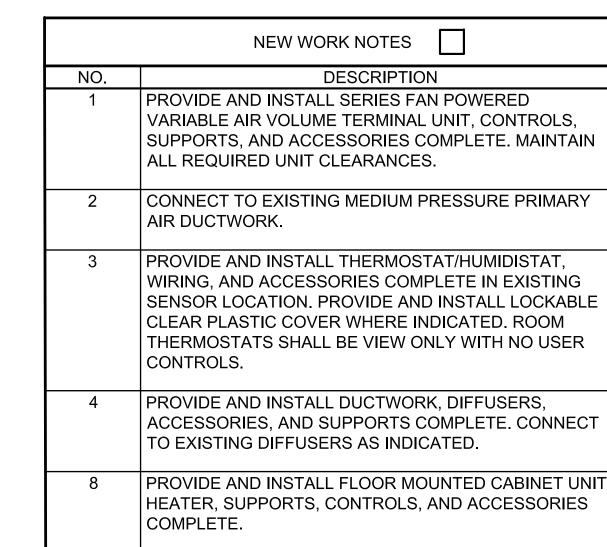

NEW WORK NOTES DESCRIPTION PROVIDE AND INSTALL SERIES FAN POWERED ALL REQUIRED UNIT CLEARANCES. CONNECT TO EXISTING MEDIUM PRESSURE PRIMARY AIR DUCTWORK. PROVIDE AND INSTALL THERMOSTAT/HUMIDISTAT, PROVIDE AND INSTALL DUCTWORK, DIFFUSERS, TO EXISTING DIFFUSERS AS INDICATED. PROVIDE AND INSTALL DUCT HEATING COIL, SUPPORTS CONTROLS, AND ACCESSORIES COMPLETE. CONNECT

ACEMEN⁻

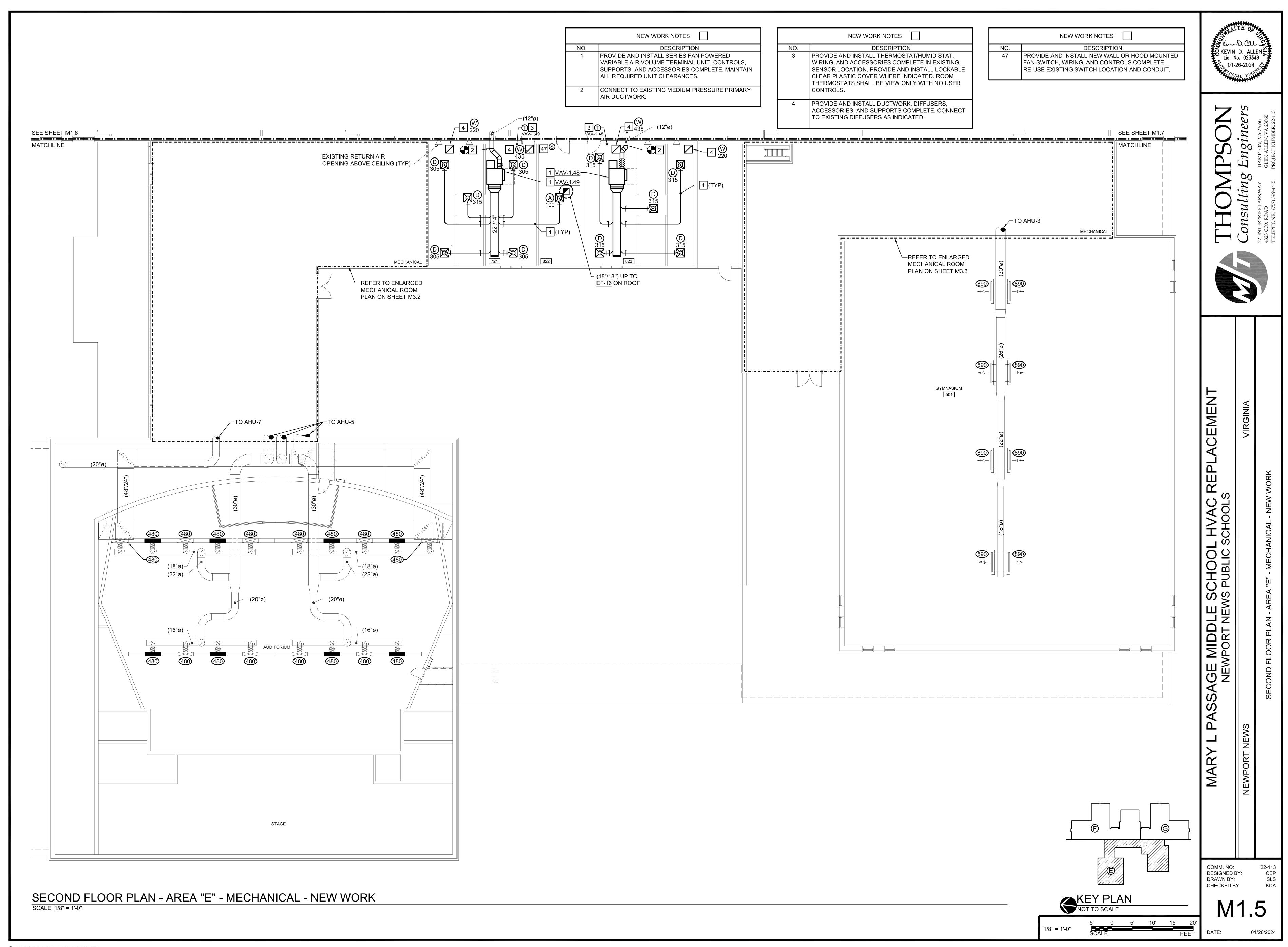
DESIGNED BY: CHECKED BY:

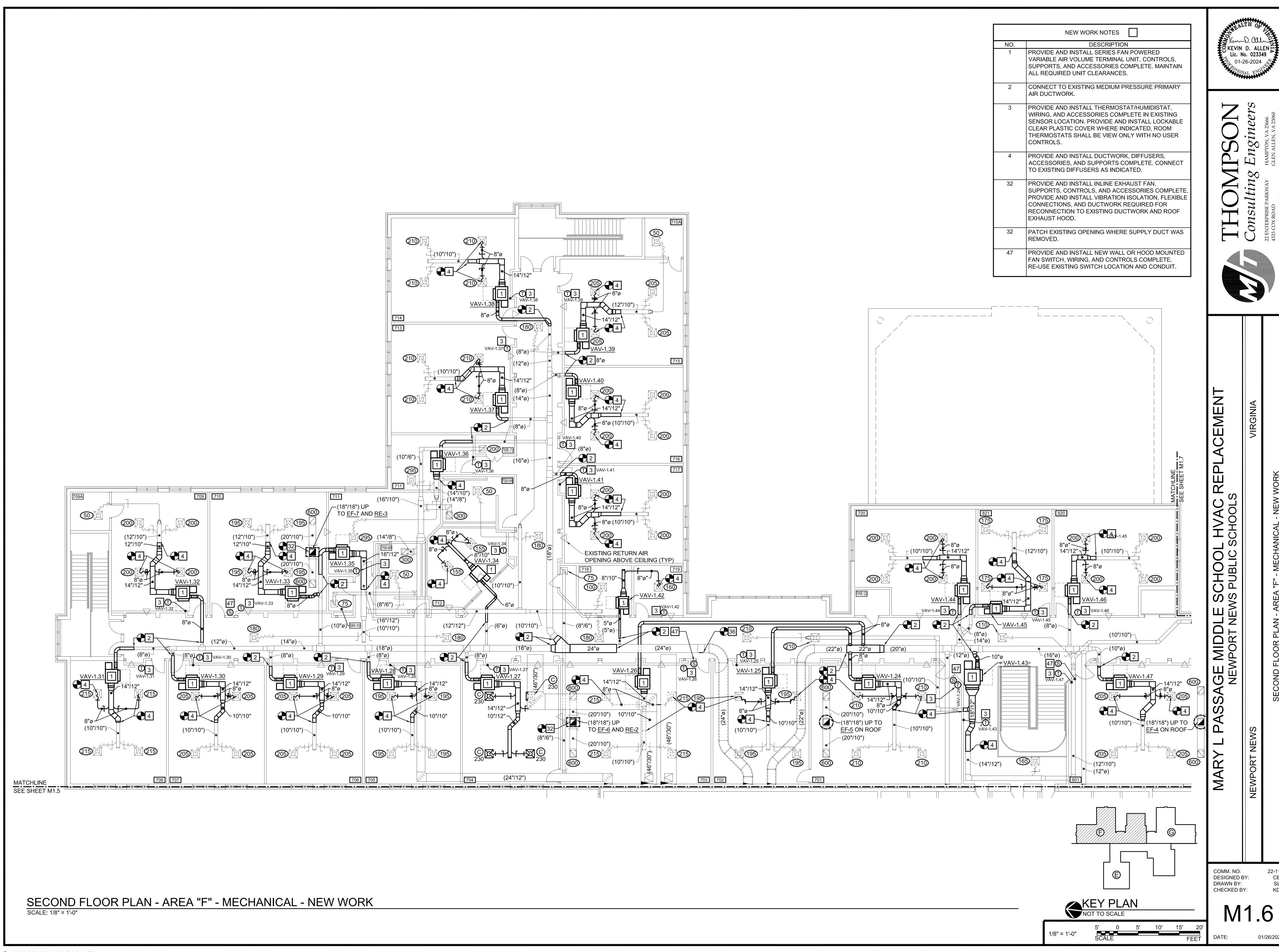

M1.1





M1.2





ACEMENT

CHECKED BY:


KEY PLAN
NOT TO SCALE

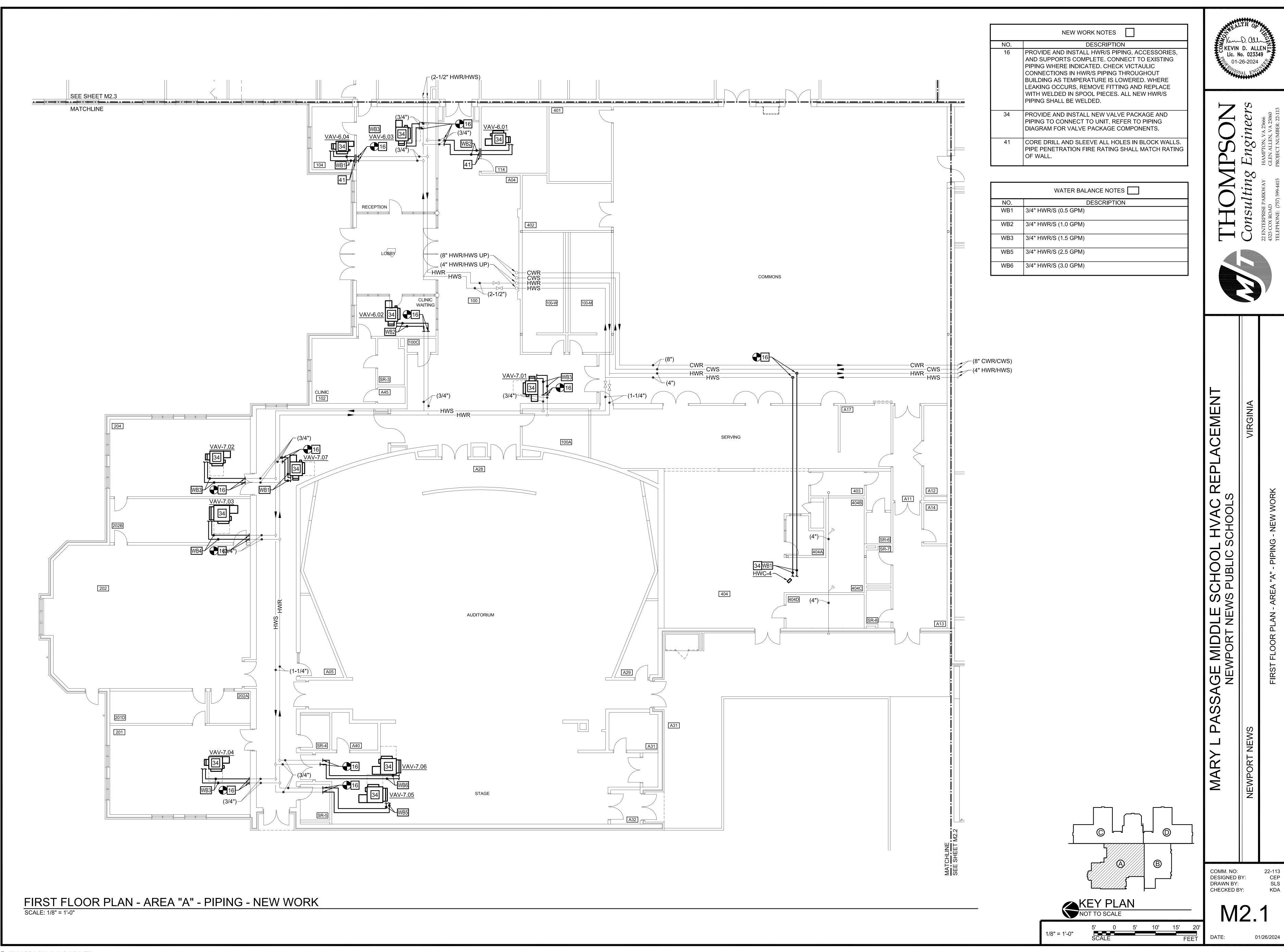
NEW WORK NOTES DESCRIPTION PROVIDE AND INSTALL SERIES FAN POWERED VARIABLE AIR VOLUME BOX, CONTROLS, SUPPORTS, AND ACCESSORIES COMPLETE. MAINTAIN ALL REQUIRED UNIT CLEARANCES. CONNECT TO EXISTING MEDIUM PRESSURE PRIMARY AIR DUCTWORK. PROVIDE AND INSTALL THERMOSTAT/HUMIDISTAT, SENSOR LOCATION. PROVIDE AND INSTALL LOCKABLE CLEAR PLASTIC COVER WHERE INDICATED. ROOM THERMOSTATS SHALL BE VIEW ONLY WITH NO USER CONTROLS. PROVIDE AND INSTALL DUCTWORK, DIFFUSERS, ACCESSORIES, AND SUPPORTS COMPLETE. CONNECT TO EXISTING DIFFUSERS AS INDICATED. PROVIDE AND INSTALL INLINE EXHAUST FAN, SUPPORTS, CONTROLS, AND ACCESSORIES COMPLETE PROVIDE AND INSTALL VIBRATION ISOLATION, FLEXIBLE CONNECTIONS, AND DUCTWORK REQUIRED FOR RECONNECTION TO EXISTING DUCTWORK AND ROOF EXHAUST HOOD. PROVIDE AND INSTALL NEW WALL OR HOOD MOUNTED FAN SWITCH, WIRING, AND CONTROLS COMPLETE. RE-USE EXISTING SWITCH LOCATION AND CONDUIT.

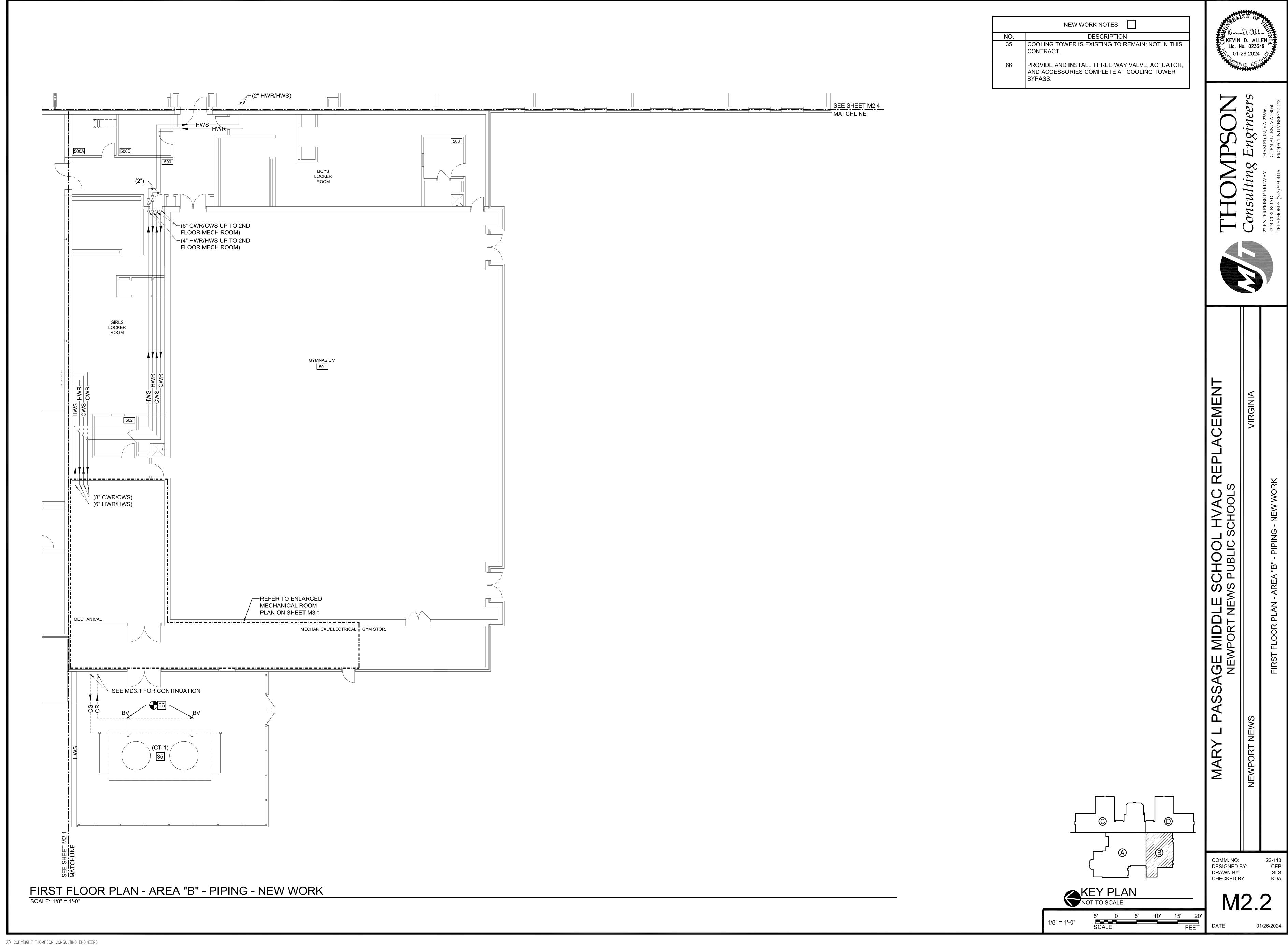


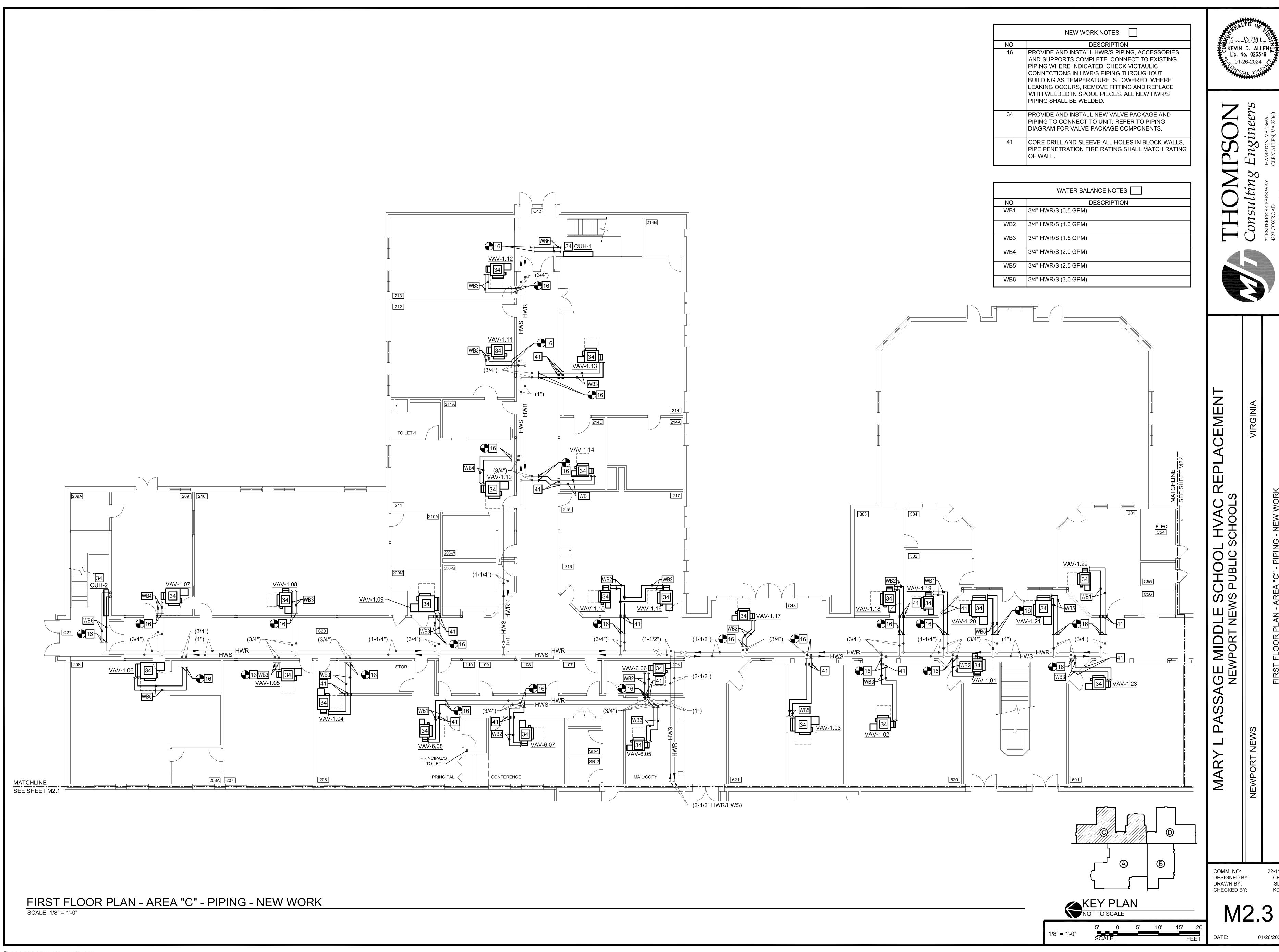
DRAWN BY: CHECKED BY:

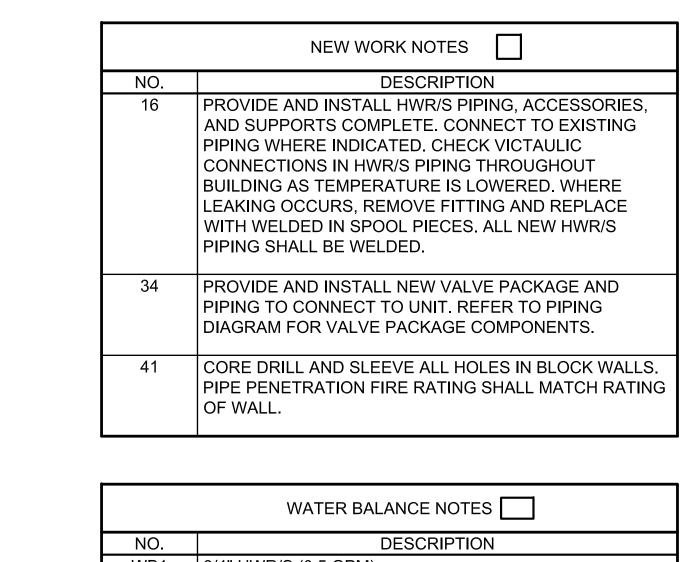
M1.7

KEY PLAN

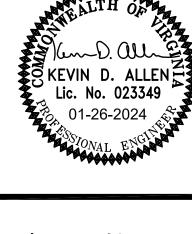

NOT TO SCALE



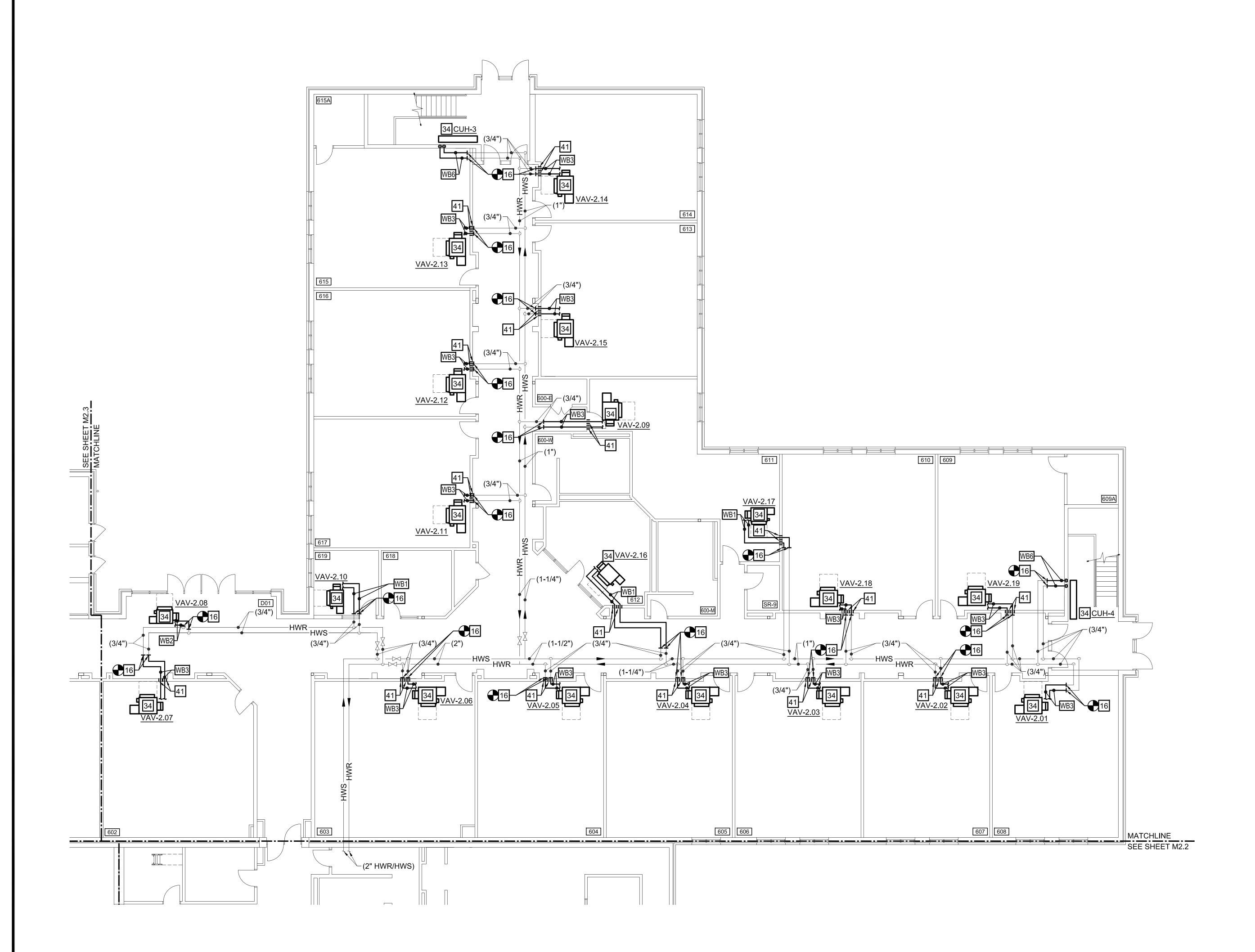


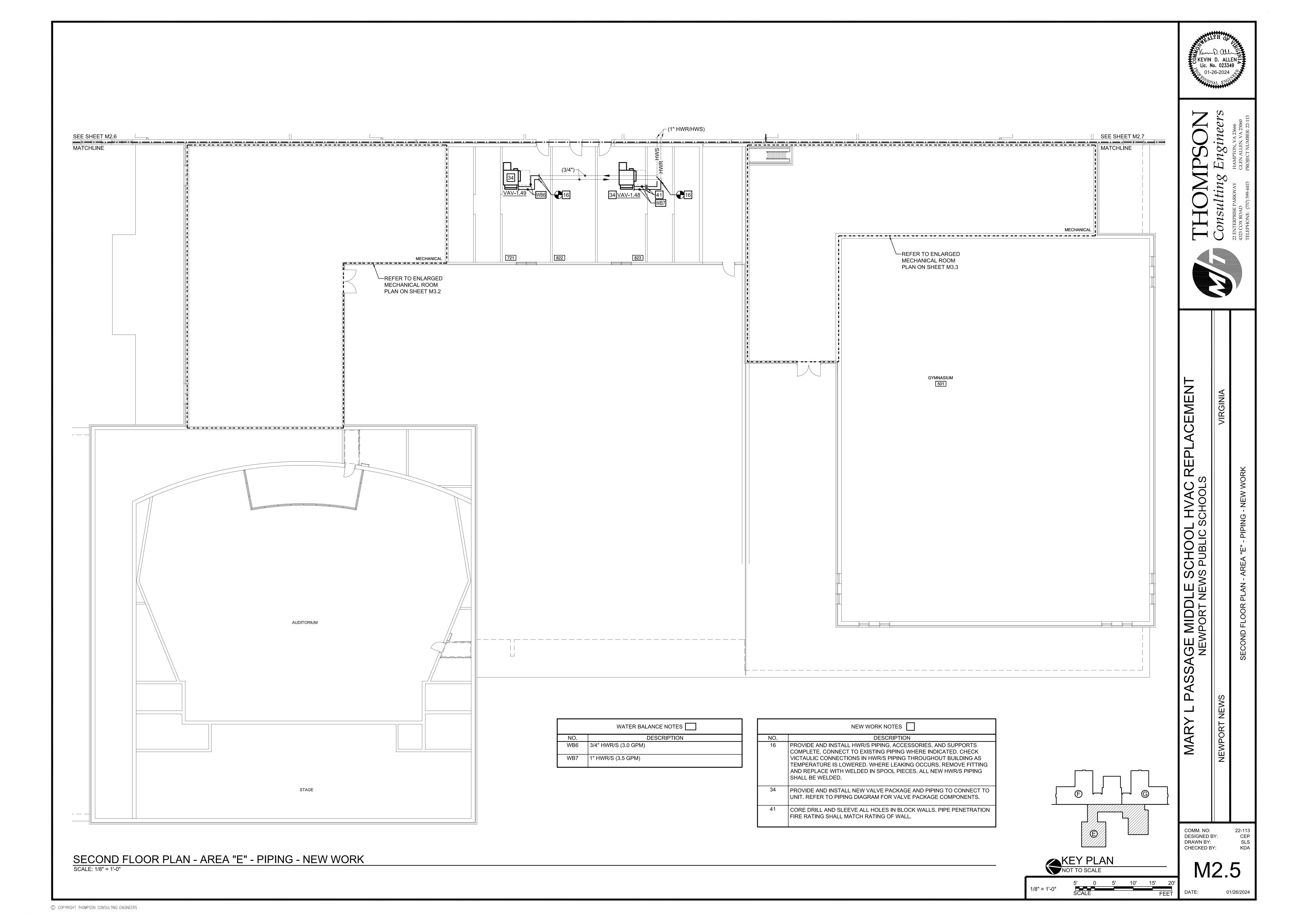

DESIGNED BY: DRAWN BY: CHECKED BY:

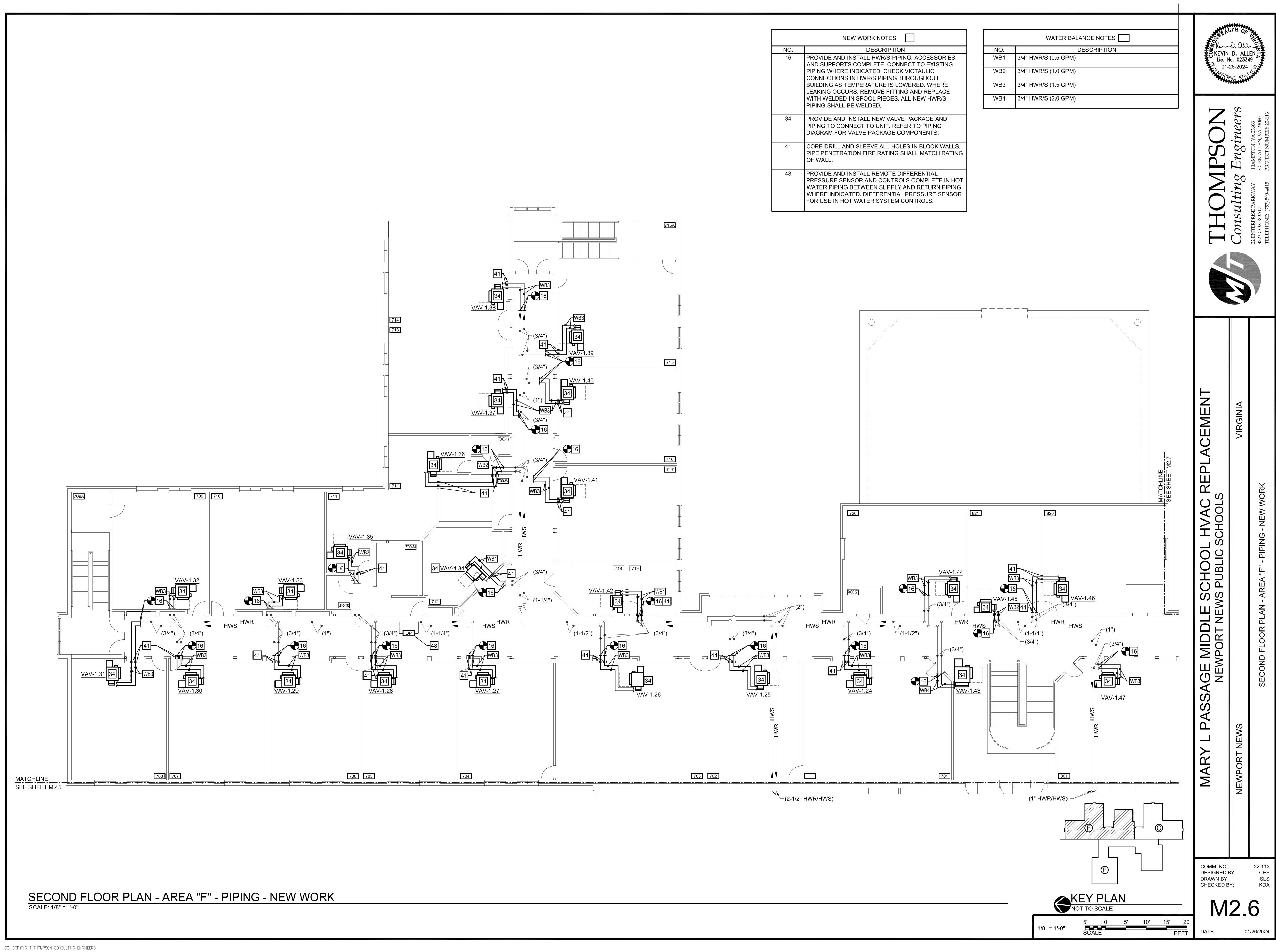
M1.8

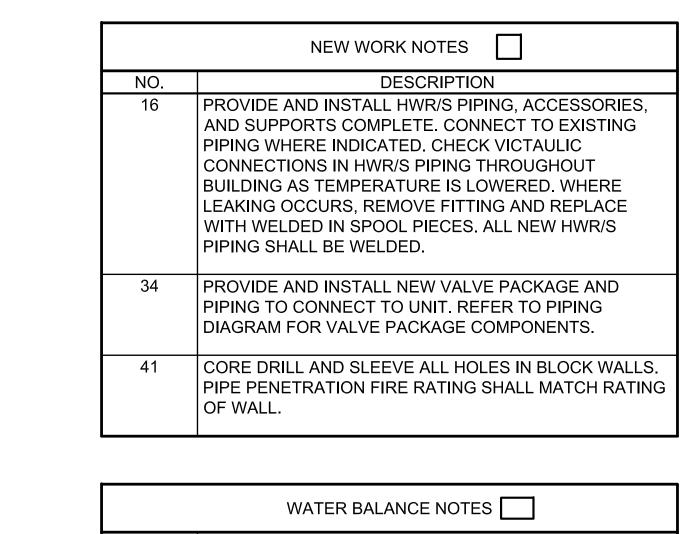


WB1 3/4" HWR/S (0.5 GPM) WB2 3/4" HWR/S (1.0 GPM) WB3 3/4" HWR/S (1.5 GPM) WB6 3/4" HWR/S (3.0 GPM)



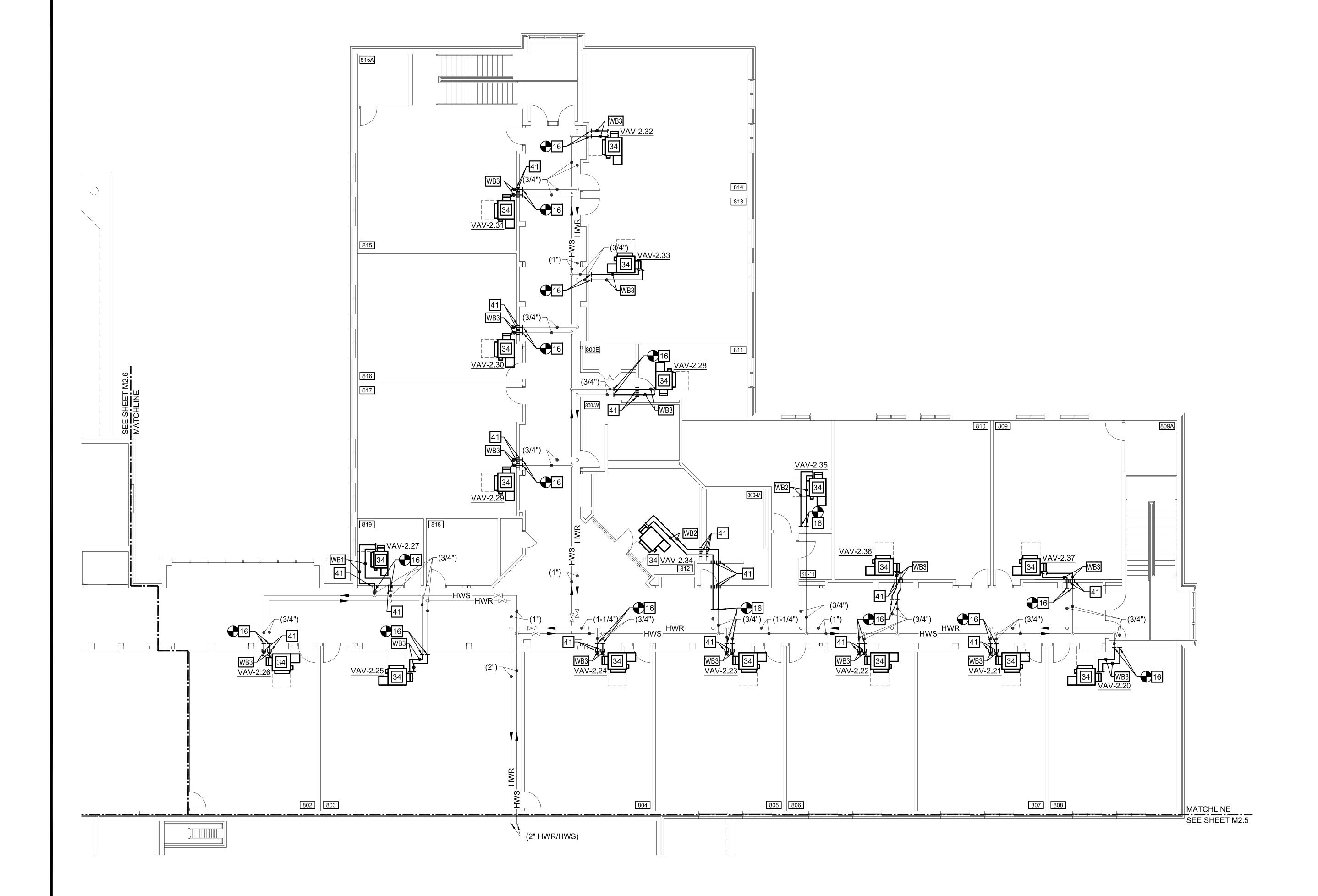

MARY L PASSAGE MIDDLE SCHOOL HVAC REPLACEMEN NEWPORT NEWS PUBLIC SCHOOLS


KEY PLAN
NOT TO SCALE


DRAWN BY: CHECKED BY:

M2.4

WATER BALANCE NOTES
DESCRIPTION
3/4" HWR/S (0.5 GPM)
3/4" HWR/S (1.0 GPM)
3/4" HWR/S (1.5 GPM)

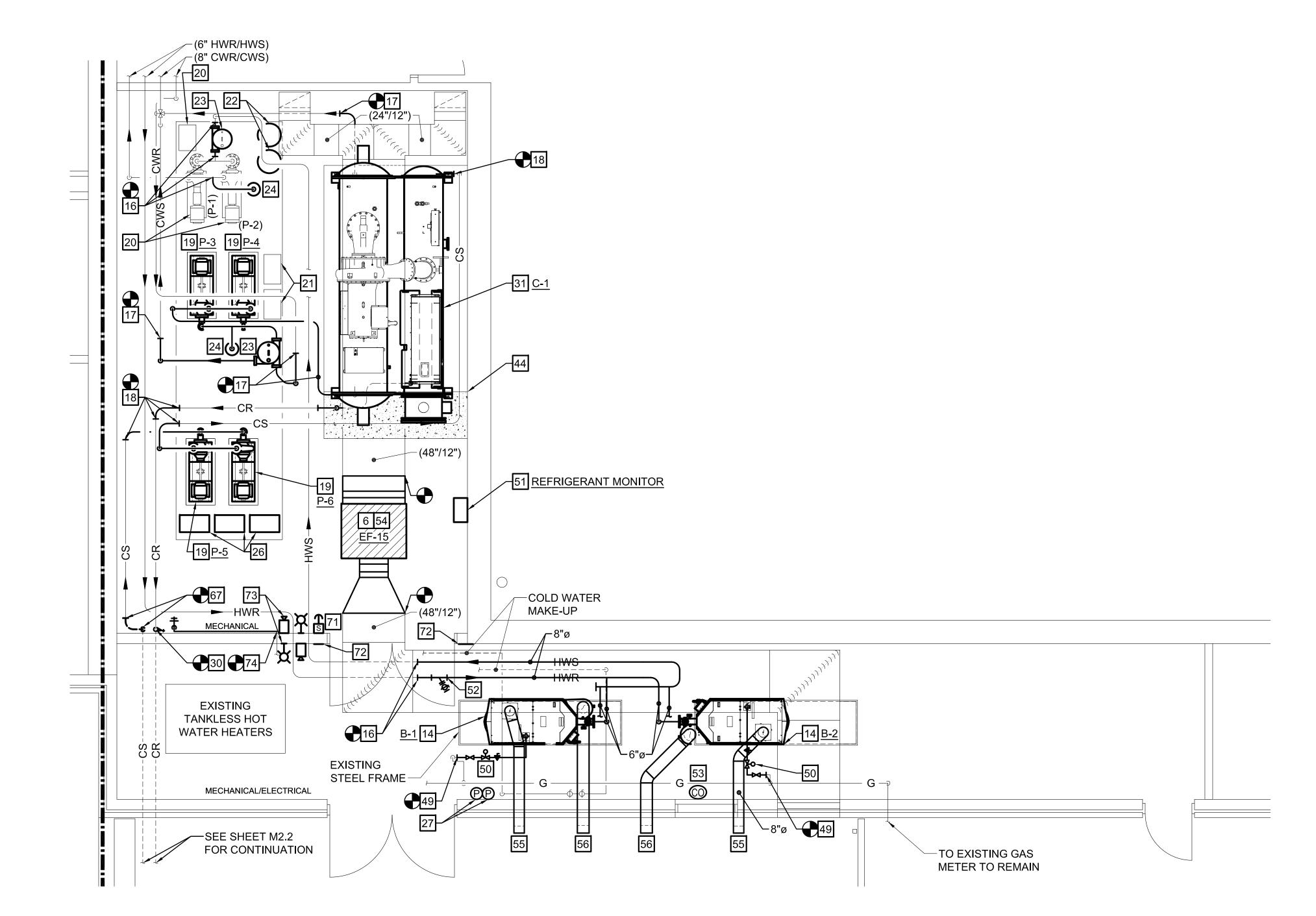


PASSAGE MIDDLE SCHOOL HVAC REPLACEMEN NEWPORT NEWS PUBLIC SCHOOLS

DRAWN BY: CHECKED BY:

KEY PLAN
NOT TO SCALE

M2.7


SECOND FLOOR PLAN - AREA "G" - PIPING - NEW WORK

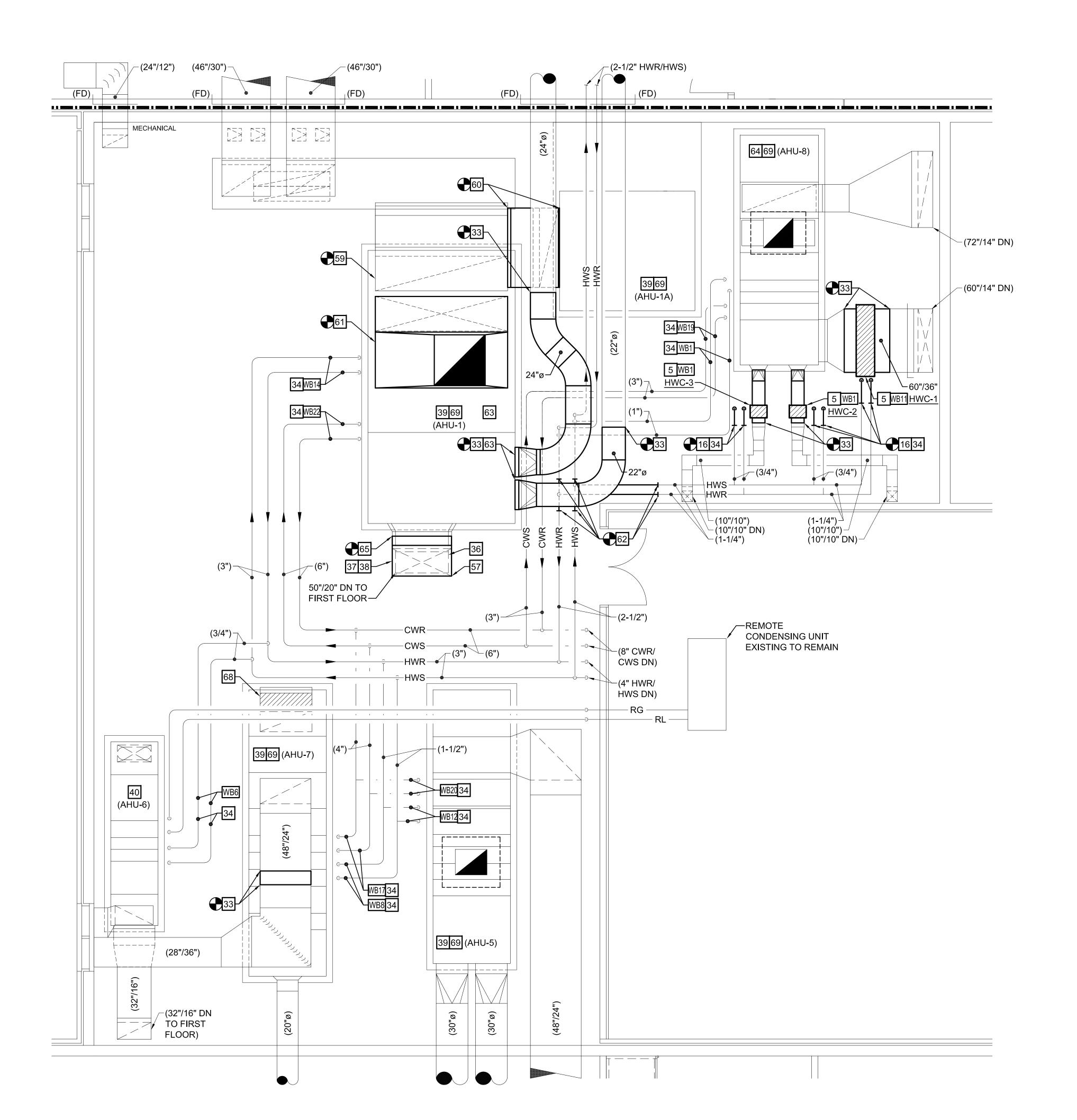
SCALE: 1/8" = 1'-0"

	NEW WORK NOTES
NO.	DESCRIPTION
6	PROVIDE AND INSTALL INLINE EXHAUST FAN, CONTROLS, AND SUPPORTS COMPLETE. PROVIDE FLEXIBLE CONNECTIONS TO FAN, VIBRATION ISOLATION, AND CONNECT TO EXISTING DUCTWORK WHERE INDICATED.
13	REFER TO "PIPE HANGER SUPPORT DETAIL" ON DRAWING M4.1 AND "PIPING SUPPORT DETAIL" ON DRAWING M4.2.
14	PROVIDE AND INSTALL CONDENSING BOILER, INTAKE AND FLUE PIPING THROUGH EXTERIOR WALL, CONTROLS, AND ACCESSORIES COMPLETE. PROVIDE AND INSTALL NEOPRENE ISOLATION PADS FOR BOILER MOUNTING ON EXISTING STEEL FRAME. REFER TO "BOILER VENTING DETAIL" ON DRAWING M4.2.
16	PROVIDE AND INSTALL HWR/S PIPING, ACCESSORIES, AND SUPPORTS COMPLETE. CONNECT TO EXISTING PIPING WHERE INDICATED. CHECK VICTAULIC CONNECTIONS IN HWR/S PIPING THROUGHOUT BUILDING AS TEMPERATURE IS LOWERED. WHERE LEAKING OCCURS, REMOVE FITTING AND REPLACE WITH WELDED IN SPOOL PIECES. ALL NEW HWR/S PIPING SHALL BE WELDED.
17	PROVIDE AND INSTALL CWR/S PIPING, ACCESSORIES, AND SUPPORTS COMPLETE. CONNECT TO EXISTING PIPING WHERE INDICATED. CHECK VICTAULIC CONNECTIONS IN CWR/S PIPING THROUGHOUT BUILDING. WHERE LEAKING OCCURS, REMOVE FITTING AND REPLACE WITH WELDED IN SPOOL PIECES. ALL NEW CWR/S PIPING SHALL BE WELDED.
18	PROVIDE AND INSTALL CR/S PIPING, ACCESSORIES, AND SUPPORTS COMPLETE. CONNECT TO EXISTING PIPING WHERE INDICATED. CHECK VICTAULIC CONNECTIONS IN CR/S PIPING THROUGHOUT BUILDING. WHERE LEAKING OCCURS, REMOVE FITTING AND REPLACE WITH WELDED IN SPOOL PIECES. ALL NEW CR/S PIPING SHALL BE WELDED.
19	PROVIDE AND INSTALL BASE MOUNTED SUCTION PUMP, CONTROLS, AND ACCESSORIES COMPLETE ON EXISTING PUMP PACKAGE BASE. NEW PUMP BASES SHALL BE GROUTED TO EXISTING PUMP PACKAGE BASE AFTER ALL CONCRETE HAS BEEN REPAIRED TO PROVIDE A SMOOTH SURFACE.

	NEW WORK NOTES
NO.	DESCRIPTION
20	HOT WATER PUMP AND VFD CONTROLS REPLACED 2023 IN ARE EXISTING TO REMAIN; NOT IN THIS CONTRACT.
21	VFD CONTROLS OF CHILLED WATER PUMPS REPLACED IN 2023 ARE EXISTING TO REMAIN; NOT IN THIS CONTRACT.
22	PROVIDE AND INSTALL NEW PRE-CHARGED BLADDER EXPANSION TANK WITH MINIMUM 53 GALLON ACCEPTANCE, HEAVY DUTY REPLACEABLE BLADDER, RING BASE, LIFTING RINGS, AND NPT SYSTEM CONNECTION SIZED AT A MAXIMUM PRESSURE OF 125 PSI. HOT WATER AND CHILLED WATER EXPANSION TANKS "BELL & GOSSETT" MODEL B-200 OR APPROVED EQUAL.
23	PROVIDE AND INSTALL AIR DIRT SEPARATOR, SPIROTHERM MODEL VDN OR APPROVED EQUAL SIZED TO SUPPORT THE FULL FLOW VOLUME.
24	PROVIDE AND INSTALL 5-GALLON CHEMICAL SHOT FILTER FEEDER WITH FUNNEL.
26	PROVIDE AND INSTALL CONDENSER WATER PUMP CONTROLS AND VFD COMPLETE. MOUNT VFDS AND CONTROL PANELS FOR PUMPS ON EXISTING PUMP PACKAGE FRAMEWORK. REFER TO PHOTOS P1 AND P4 ON DRAWING MD5.1 FOR FRAMEWORK EXISTING CONDITIONS.
27	PROVIDE AND INSTALL BOILER STOP PUSH STATIONS, WIRING, AND ACCESSORIES COMPLETE.
30	PROVIDE AND INSTALL ISOLATION VALVE AND Y-TYPE STRAINER WITH BLOWDOWN VALVE IN CONDENSER WATER RETURN PIPING AND NEW O-RING AT METAL TO PLASTIC CONNECTION. CONNECT TO EXISTING PIPING.
31	PROVIDE AND INSTALL CHILLER, ACCESSORIES, AND CONTROLS COMPLETE ON EXISTING CONCRETE HOUSEKEEPING PAD DURING WINTER PHASE OF PROJECT.
44	PROVIDE AND INSTALL EXTENSION OF 4" THICK HOUSEKEEPING PAD. TIE INTO EXISTING PAD FOR A CONTINUOUS INSTALLATION. REFER TO "HOUSE KEEPING PAD EXTENSION DETAIL" ON DRAWING M4.2.

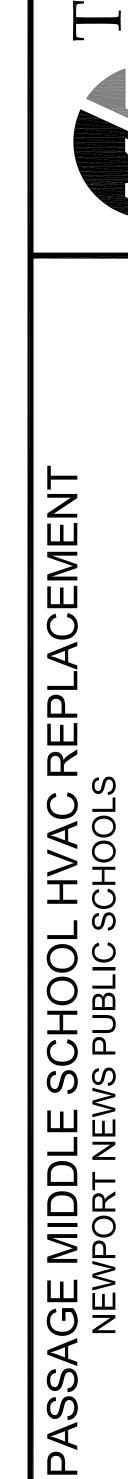
	NEW WORK NOTES
NO.	DESCRIPTION
49	PROVIDE AND INSTALL NEW 2" DIAMETER SCHEDU STEEL GAS PIPING, SUPPORTS, ACCESSORIES, AN CONTROLS COMPLETE. CONNECT TO EXISTING GA PIPING WHERE INDICATED.
50	PROVIDE AND INSTALL 10" WC LINE PRESSURE GA REGULATOR AND VENT AS REQUIRED BY THE MANUFACTURER. CONNECT TO EXISTING BOILER REGULATOR VENT PIPING.
51	PROVIDE AND INSTALL NEW REFRIGERANT MONIT SYSTEM AS REQUIRED TO PROPERLY MONITOR REFRIGERANT R-1233ZD(E) AS INSTALLED IN NEW CHILLER DURING WINTER PHASE OF PROJECT TO INCLUDE VISUAL AND AUDIBLE ALARMS. TEST AND VERIFY PROPER FUNCTION OF REFRIGERANT MONINCLUDING VISUAL AND AUDIBLE ALARMS AND INTEGRATION WITH NEW BAS SYSTEM.
52	PROVIDE AND INSTALL 8" SYSTEM STRAINER WITH MESH SCREEN. "METRAFLEX" MODEL LPD OR APPROVED EQUAL.
53	PROVIDE AND INSTALL WALL-MOUNTED, BAS-NETWORKABLE GAS DETECTOR FOR MONITO CARBON MONOXIDE CONCENTRATION. PROVIDE WALL-MOUNTED ANNUNCIATOR PANEL AND INTER WITH GAS DETECTOR IN SPACE.
54	FAN SHALL BE CONTROLLED BY REFRIGERANT MONITOR. VERIFY PROPER CONNECTION AND INTEGRATION OF FAN AND REFRIGERANT MONITO
55	BOILER INTAKE THROUGH EXTERIOR WALL. RE-USE EXISTING PENETRATION WHERE POSSIBLE. EXPAIN FILL PENETRATION AS REQUIRED. INTAKE PIPE SHOULE 8" DIAMETER SCHEDULE 40 PVC PIPE. REFER TO BOILER VENTING DETAIL ON DRAWING M4.2.
56	BOILER FLUE VENT THROUGH EXTERIOR WALL. RI EXISTING PENETRATION WHERE POSSIBLE. EXPAIN FILL PENETRATION AS REQUIRED. FLUE GAS VENT SHALL BE 9" DIAMETER AL29-4C STAINLESS STEEL OTHER UL-1738 APPROVED EXHAUST VENT MATER REFER TO "BOILER VENTING DETAIL" ON DRAWING
67	PROVIDE AND INSTALL NEW CR PIPING AND O-RIN METAL TO PLASTIC CONNECTION. CONNECT TO EXISTING PIPING WHERE INDICATED.
71	PROVIDE CHILLER EMERGENCY STOP PUSH BUTT EACH ENTRANCE TO THE MECHANICAL ROOM.
72	PROVIDE NFPA 704 HAZARD SIGN AND REFRIGERA MACHINERY ROOM SIGN MOUNTED ON OR NEAR A DOORS LEADING INTO THE MECHANICAL ROOM. F TO DETAILS ON DRAWING M4.2.
73	PROVIDE REFRIGERANT MONITOR ALARMS AT EA ENTRANCE. INTERLOCK WITH REFRIGERANT MON
74	PROVIDE AND INSTALL NEW PIPING, HOSE BIB, SUPPORTS, AND ACCESSORIES COMPLETE IN LOCATION TO ALLOW FOR INSTALLATION OF NEW ELECTRICAL PANELS AND TRANSFORMER. INSTAL HOSE BIB AT SAME ELEVATION AS ORIGINAL INSTANCH EXISTING PIPING SIZES AND MATERIALS.

ENLARGED FLOOR PLAN - MECHANICAL ROOM - NEW WORK


SCALE: 1/4" = 1'-0"

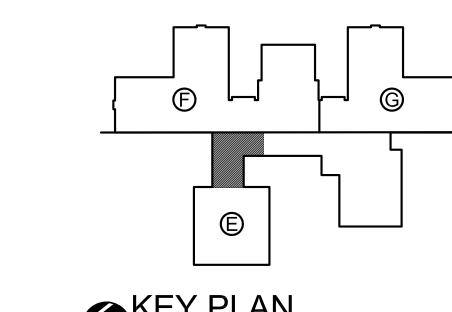
COMM. NO: DESIGNED BY: DRAWN BY: CHECKED BY: 22-113 CEP SLS KDA

PASSAGE MIDDLE SCHOOL HVAC REPLACEMENT
NEWPORT NEWS PUBLIC SCHOOLS


M3.1

NEW WORK NOTES DESCRIPTION PROVIDE AND INSTALL DUCT HEATING COIL, SUPPORTS CONTROLS, AND ACCESSORIES COMPLETE. CONNECT TO EXISTING DUCTWORK WHERE INDICATED. PROVIDE AND INSTALL HWR/S PIPING, ACCESSORIES, AND SUPPORTS COMPLETE. CONNECT TO EXISTING PIPING WHERE INDICATED. CHECK VICTAULIC CONNECTIONS IN HWR/S PIPING THROUGHOUT BUILDING AS TEMPERATURE IS LOWERED. WHERE LEAKING OCCURS, REMOVE FITTING AND REPLACE WITH WELDED IN SPOOL PIECES. ALL NEW HWR/S PIPING SHALL BE WELDED. PROVIDE AND INSTALL NEW DUCTWORK AND SUPPORTS COMPLETE. CONNECT TO EXISTING DUCTWORK WHERE INDICATED. MATCH EXISTING DUCTWORK CONSTRUCTION. PROVIDE AND INSTALL NEW VALVE PACKAGE AND PIPING TO CONNECT TO UNIT. REFER TO PIPING DIAGRAM FOR VALVE PACKAGE COMPONENTS. PATCH EXISTING OPENING WHERE SUPPLY DUCT WAS REMOVED. SAW CUT CONCRETE FLOOR FOR NEW SUPPLY DUCTWORK PENETRATION DOWN TO FIRST FLOOR. REINSTALL OWNER'S PULLEY SYSTEM FOR MAINTENANCE THAT WAS STORED DURING CONSTRUCTION. REFER TO PHOTO P10 ON DRAWING MD5.1 FOR AHU-1 SUPPLY DUCT EXISTING CONDITIONS INCLUDING PULLEY SYSTEM. PROVIDE AND INSTALL AIR HANDLING UNIT INTERNAL COMPONENTS, INCLUDING BUT NOT LIMITED TO, HEATING AND COOLING COILS, SUPPLY AND EXHAUST FANS, AND FILTERS. CLEAN AND COAT UNIT INTERNAL DRAIN PANS WITH PROTECTANT SEAL TO PREVENT CONTINUED DETERIORATION. REFER TO SCHEDULE ON DRAWING M0.3 FOR PERFORMANCE REQUIREMENTS AND AHU DIAGRAMS FOR INTERNAL COMPONENTS. WHERE EXISTING SUPPLY FANS ARE VERTICAL BARRY BLOWERS, MOUNT NEW FANS ON EXISTING ISOLATED BASERAIL AND PROVIDE AND INSTALL NEW FLEXIBLE CONNECTION TO SUPPLY PLENUM AHU SECTION. WHERE NEW FAN HEIGHT IS GREATER THAN EXISTING, FLEXIBLE CONNECTION CAN BE SECURED TO THE INSIDE OF THE SUPPLY PLENUM SECTION RATHER THAN THE TOP OF THE SUPPLY FAN SECTION PER EXISTING INSTALLATION. UNIT REPLACEMENT NOT IN THIS CONTRACT. PROVIDE AND INSTALL 6" HIGH CONCRETE DAM AROUND FLOOR PENETRATION TO PREVENT WATER SEEPAGE THROUGH TO FIRST FLOOR. REFER TO "CONCRETE PAD DETAIL" ON DRAWING M4.2.

NO.	DESCRIPTION
59	PROVIDE AND INSTALL PANEL MATCHING CONSTRUCTION OF AHU-1 TO CLOSE ORIGINAL EXHAUST SECTION OPENING AT THE TOP OF UNIT.
60	PROVIDE AND INSTALL DOUBLE WALL PLENUM BOX BETWEEN UNITS AHU-1 AND AHU-1A WITH DUCT AND FLEXIBLE CONNECTION BETWEEN BOX AND UNIT EXHAUST SECTION OPENINGS.
61	PROVIDE AND INSTALL OUTSIDE AIR DUCTWORK TO MATCH EXISTING CONSTRUCTION. CONNECT TO EXISTING DUCTWORK WHERE INDICATED.
62	PROVIDE AND INSTALL HWR/S PIPING AND ACCESSORIES WITH BRANCH CONNECTION OFF OF BOTTOM OF PIPING MAIN TO COORDINATE WITH DUCTWORK RELOCATION. RECONNECT TO EXISTING PIPING WHERE INDICATED.
63	CAP OPENING OF EXISTING SUPPLY DUCT PLENUM WHERE SUPPLY DUCTWORK CONNECTION HAS BEEN RELOCATED.
64	PROVIDE AND INSTALL AIR HANDLING UNIT INTERNAL COMPONENTS, INCLUDING BUT NOT LIMITED TO, HEATING AND COOLING COILS, EXHAUST FANS, AND FILTERS. CLEAN AND COAT UNIT INTERNAL DRAIN PANS WITH PROTECTANT SEAL TO PREVENT CONTINUED DETERIORATION. REFER TO SCHEDULE ON DRAWING M0.3 FOR PERFORMANCE REQUIREMENTS AND AHU DIAGRAMS FOR INTERNAL COMPONENTS. SUPPLY FANS REPLACED BY OWNER IN PREVIOUS PROJECT AND ARE NOT IN THE SCOPE OF THIS PROJECT.
65	PROVIDE AND INSTALL NEW DOUBLE WALL DUCTWORK WITH 2" INTERNAL INSULATION. CONNECT TO EXISTING SUPPLY PLENUM BOX WHERE INDICATED.
68	PROVIDE AND INSTALL NEW DUCTWORK AND INSULATION COMPLETE WHERE REMOVED FOR REMOVAL OF RUNAROUND COIL OR DAMAGED.
69	RE-SEAL ALL DUCTWORK CONNECTIONS AT AIR HANDLING UNIT FOR MINIMUM OF FIVE FEET FROM UNIT CONNECTION.


	WATER BALANCE NOTES
NO.	DESCRIPTION
WB1	3/4" HWR/S (0.5 GPM)
WB6	3/4" HWR/S (3.0 GPM)
WB8	1" HWR/S (6.0 GPM)
WB10	1-1/4" HWR/S (10.0 GPM)
WB11	1-1/4" HWR/S (12.0 GPM)
WB12	1-1/2" HWR/S (16.0 GPM)
WB14	2-1/2" HWR/S (39.0 GPM)
WB17	3" CWR/S (64.0 GPM)
WB19	3" CWR/S (78.0 GPM)
WB20	4" CWR/S (109.0 GPM)
WB22	6" CWR/S (342.0 GPM)

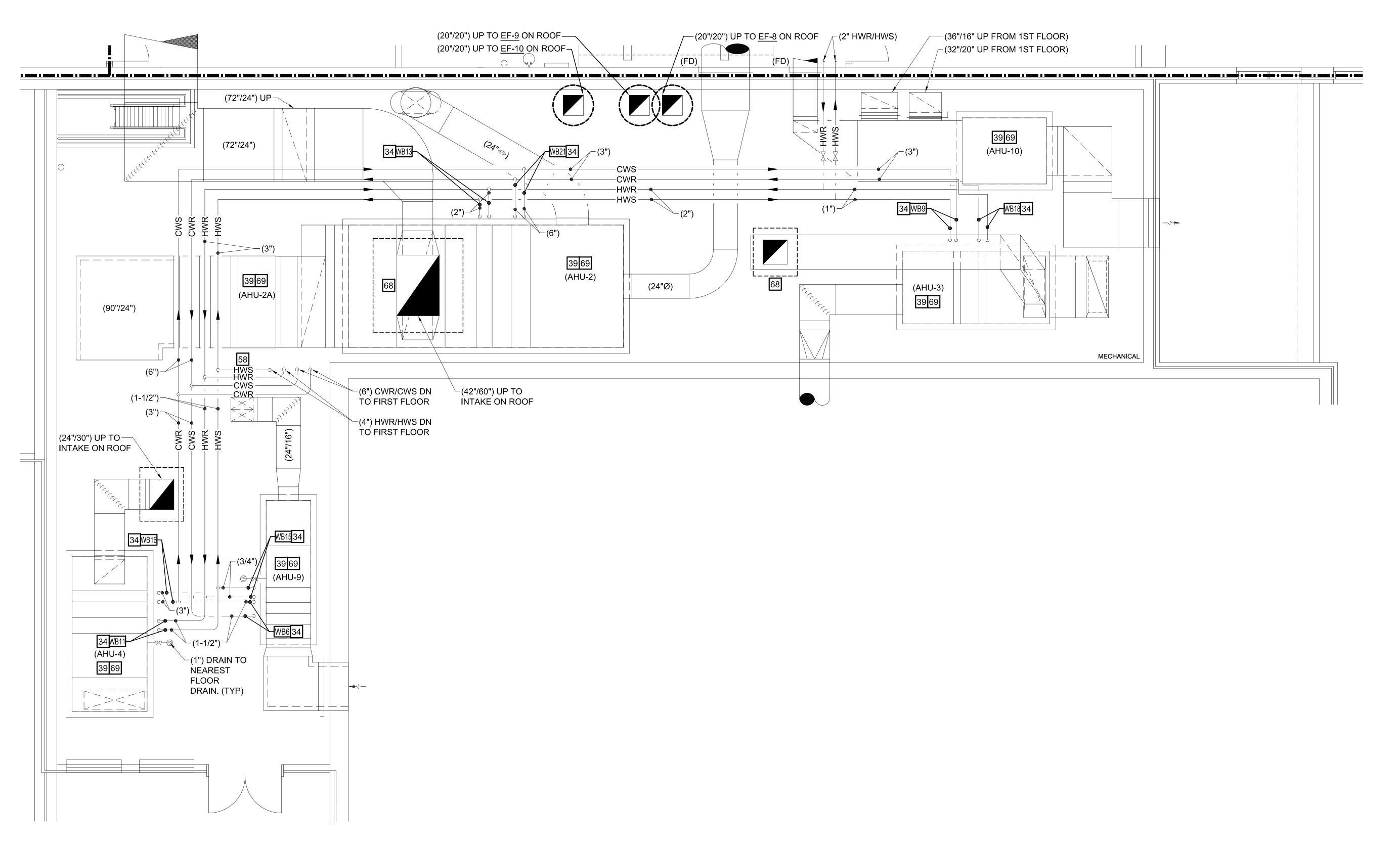
🕵 KEVIN D. ALLEN

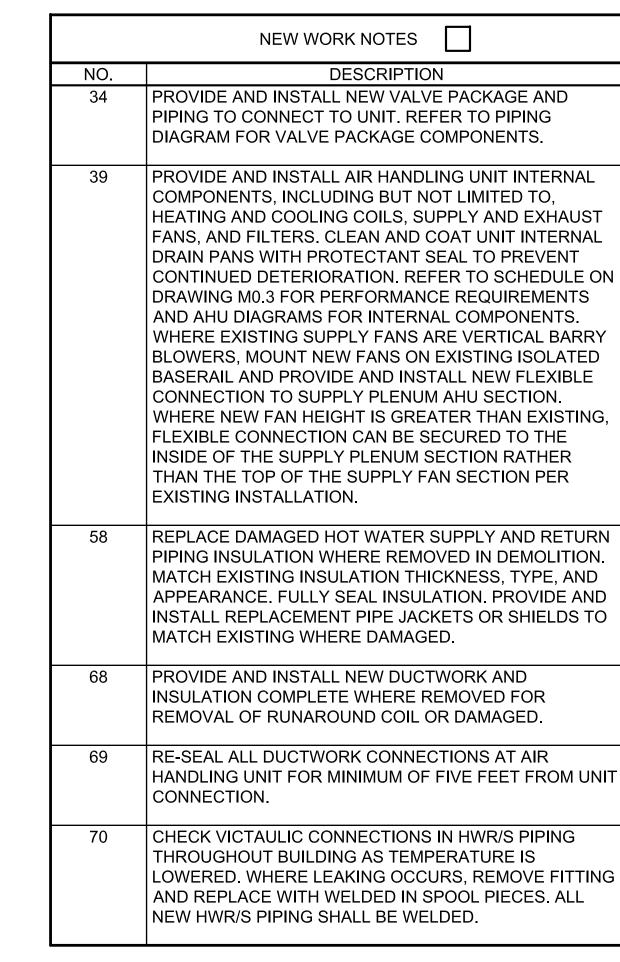
Lic. No. 023349

01-26-2024

COMM NO: DESIGNED BY: DRAWN BY: CHECKED BY:

MARY


M3.2 01/26/2024


SLS KDA

KEY PLAN
NOT TO SCALE

SCALE: 1/4" = 1'-0"

ENLARGED FLOOR PLAN - MECHANICAL MEZZANINE - NEW WORK

	WATER BALANCE NOTES
NO.	DESCRIPTION
WB6	3/4" HWR/S (3.0 GPM)
WB9	1-1/4" HWR/S (9.0 GPM)
WB11	1-1/4" HWR/S (12.0 GPM)
WB13	2" HWR/S (24.0 GPM)
WB15	2" CWR/S (24.0 GPM)
WB16	3" CWR/S (60.0 GPM)
WB18	3" CWR/S (72.0 GPM)
WB21	6" CWR/S (223.0 GPM)

MARY L PASSAGE MIDDLE SCHOOL HVAC REPLACEMEN

NEWPORT NEWS PUBLIC SCHOOLS

KEVIN D. ALLEN

Itin

Lic. No. 023349

01-26-2024

E KEY PLAN
NOT TO SCALE

COMM. NO: DESIGNED BY: DRAWN BY: CHECKED BY:

M3.3

1/8" = 1'-0"

ENLARGED FLOOR PLAN - MECHANICAL MEZZANINE - NEW WORK

-FLEXIBLE DUCT (MAX. 5'-0" LONG)

-VAV BOX, HANG FROM BUILDING STRUCTURE WITH

-MEDIUM PRESSURE DUCTWORK

-VIBRATION ISOLATORS WHERE REQUIRED BY

-HANGER ROD, SUSPEND

FROM OVERHEAD (TYP)

—DOUBLE NUTTED (TYP)

-DOUBLE NUTTED (TYP)

-WASHER (TYP)

-PIPE WELDED TO ANGLE (TYP)

-SUCTION DIFFUSER

-GROUT PUMP BASE PER

MANUFACTURER'S INSTRUCTIONS.

ALIGN PUMP AFTER INSTALLATION

AND PRIOR TO GROUTING BASE.

SPECIFICATIONS

THREADED RODS AND VIBRATION ISOLATORS

-"LO LOSS" SADDLE TEE

-ELECTRICAL ENCLOSURES

-MAINTAIN NOTED CLEARANCES

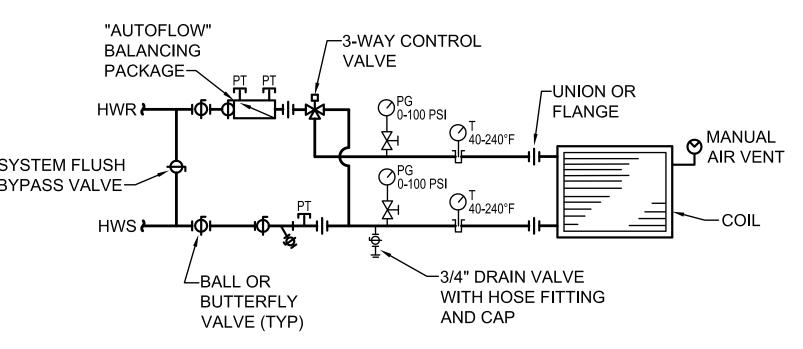
VERTICAL OBSTRUCTIONS (TYP)

FROM ALL HORIZONTAL AND

-48" MIN. TO FIRST BRANCH

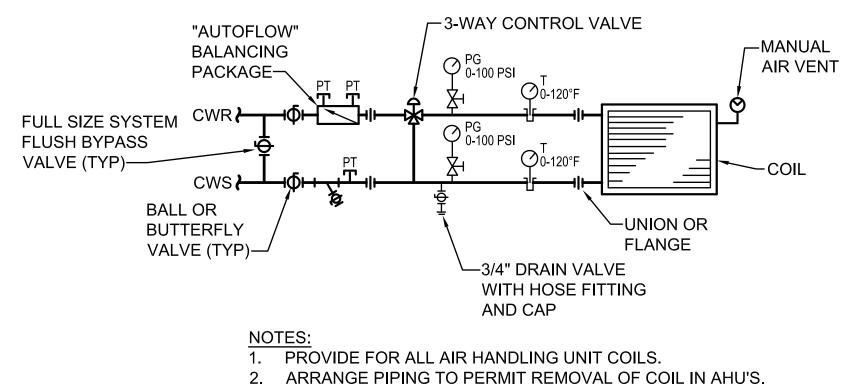
COMM NO: 22-113 **DESIGNED BY:** SLS DRAWN BY: CHECKED BY: KDA

M4.

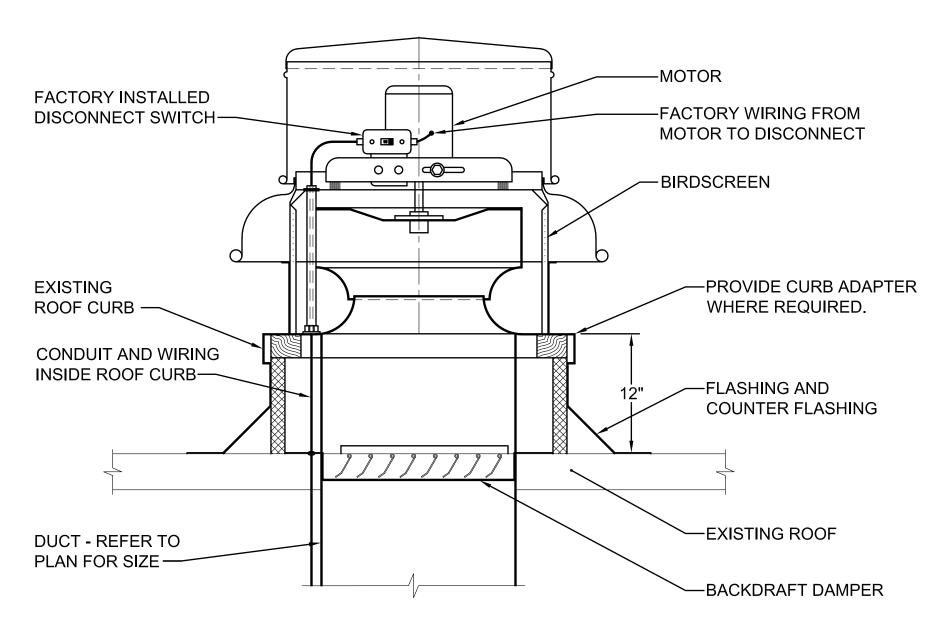

DATE: 01/26/2024

DUCTWORK CONSTRUCTION REQUIREMENTS PRESSURE CLASS SEAL CLASS LEAKAGE CLASS SYSTEM RECTANGULAR - 4 SUPPLY AIR +2.5" WG CLASS A ROUND - 2 RECTANGULAR - 8 RETURN AIR -1.0" WG CLASS A ROUND - 4 RECTANGULAR - 8 ROUND - 4 **EXHAUST AIR** -1.0" WG CLASS A TRANSFER AIR N/A NOT REQUIRED

> -2-WAY CONTROL "AUTOFLOW" **BALANCING FLANGE** PACKAGE-SYSTEM FLUSH BYPASS VALVE— ─3/4" DRAIN VALVE -BALL OR WITH HOSE FITTING BUTTERFLY AND CAP


1. PROVIDE FOR VAV TERMINALS, CABINET UNIT HEATERS UNIT

HOT WATER COIL PIPING DIAGRAM - 2 WAY VALVE



1. PROVIDE FOR ALL AIR HANDLING UNITS. 2. ARRANGE PIPING TO PERMIT REMOVAL OF COIL IN AHU'S.

HOT WATER COIL PIPING DIAGRAM - 3 WAY VALVE

CHILLED WATER COIL PIPING DIAGRAM - 3 WAY VALVE NOT TO SCALE

ROOF EXHAUST FAN DETAIL

LOW VELOCITY SINGLE WALL RECTANGULAR DUCTWORK DETAILS NOT TO SCALE REFER TO DUCTWORK CONSTRUCTION REQUIREMENTS

20° MAX.-

90° TEES

 $R_1 = (X+Y)/2$

X OR Y LESS THAN 12"

NOTE: ABOVE APPLY TO SUPPLY AND RETURN

FOR D OF 12" OR MORE USE VANED ELBOW

UNLESS OTHERWISE INDICATED ON THE DRAWING.

90° RADIUS ELBOWS

 $R_2 = X + Y$

NEW WORK NOTES: 1 PROVIDE "GLOBAL PLASMA SOLUTIONS" MODEL "GPS-IMOD" BIPOLAR IONIZATION GENERATOR FOR RTU-1 THRU 5 AND RTU-7 THRU 9. IMOD SHALL BE MOUNTED UPSTREAM OF THE COOLING COIL AT THE TOP OF THE FINNED SURFACE AREA OF THE COIL REFER TO FIGURE 1 FOR EXAMPLE. PROVIDE SUFFICIENT QUANTITY OF 6" IMOD SECTIONS TO MATCH THE WIDTH OF THE COOLING COIL VERIFY THAT ALL MODULAR SECTIONS OF THE IMOD ARE ATTACHED

OFFSETS

° MAX.-⁄

BRANCH TAKEOFFS

PREFERRED OFFSET

FULL RADIUS WHERE POSSIBLE

RETURN ONLY

ROUND DUCT TAKEOFF

FROM RECTANGULAR MAIN

2 PROVIDE "GLOBAL PLASMA SOLUTIONS" 15 WATT POWER SUPPLY WITH MULTI-VOLTAGE INPUT FOR EACH ROOFTOP UNIT. WIRE POWER SUPPLY TO IMOD UTILIZING 6'-0" FLEXIBLE POWER CABLE PROVIDED WITH IMOD. MOUNT POWER SUPPLY ON INSIDE OF ROOFTOP UNIT CABINET AND CONNECT TO UNIT POWER

(THIS SHEET ONLY

(TYPICAL FOR AHU-1, 2, 3, 4, 5, 7, 8, AND 9)

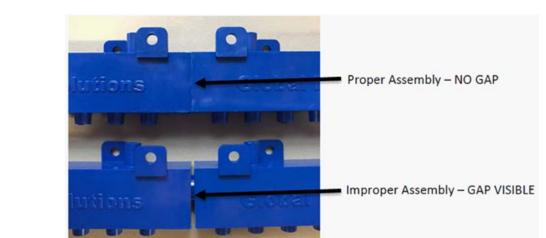
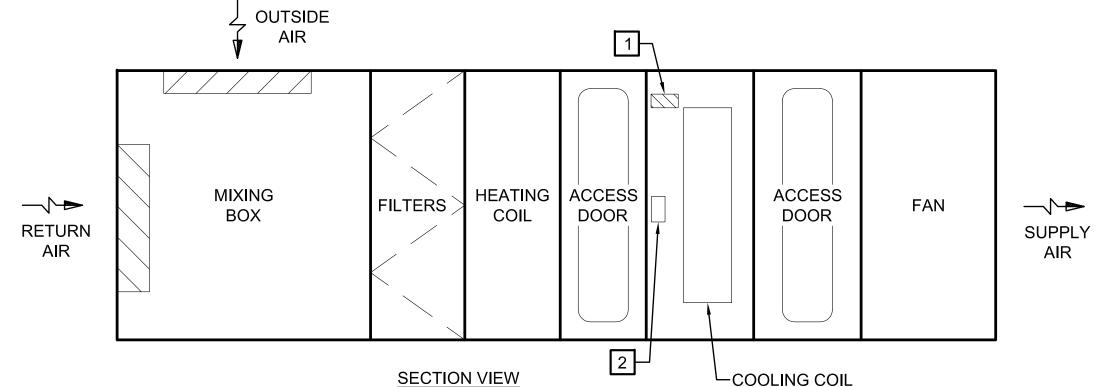



FIGURE 2: BI DEVICE MODULE ASSEMBLY

-FINISHED CEILING SUPPORT

-EXISTING SUPPLY AIR DIFFUSER FACE.

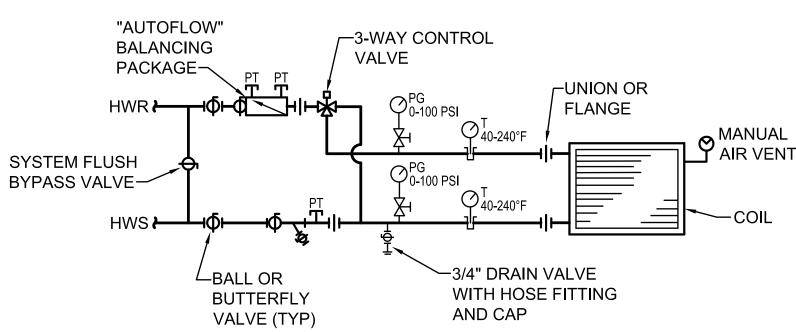
FIGURE 1: BI DEVICE MOUNTING LOCATION

ROOFTOP & AIR HANDLING UNIT BIPOLAR IONIZATION INSTALLATION DIAGRAM

-2" WIDE DUCT HANGER NEW CEILING HANGER WIRE TO STRUCTURE — -PREINSULATED FLEXIBLE DUCT RECTANGULAR TO ROUND EXPANDED FLEXIBLE DUCT SECURED WITH MECHANICAL SIDE TAKE-OFF WITH DAMPER IN BRANCH BAND CLAMPS, SEE SPECIFICATIONS FOR EXTERNAL INSULATION ON SHEET METAL— ACCEPTABLE MATERIALS (TYP) -USE FOIL BACKED TAPE TO TRANSITION TO FLEXIBLE DUCT INSULATION (TYP ALL FLEXIBLE DUCTS) -INSULATION OVERLAPPING DIFFUSER COLLAR

TYPICAL CEILING DIFFUSER DUCT CONNECTION INSTALLATION DETAIL

NOT TO SCALE


© COPYRIGHT THOMPSON CONSULTING ENGINEERS

CONSTRUCT ALL DUCTWORK IN ACCORDANCE WITH "SMACNA" HVAC DUCT CONSTRUCTION STANDARDS. ALL RECTANGULAR AND MITERED ELBOWS SHALL BE PROVIDED WITH TURNING VANES. REFER TO SMACNA HVAC DUCT LEAKAGE MANUAL FIGURE 5-1 FOR LEAKAGE RATES. ALL MEDIUM PRESSURE DUCTWORK SHALL BE LEAK TESTED (DALT) AS SPECIFIED. X OR W LESS THAN 12'

VALVE (TYP)

HEATERS, AND DUCT MOUNTED HEATING COILS.

NOT TO SCALE

NOT TO SCALE

NOT TO SCALE

PROVIDE MALCO FDS1 FLEXIBLE DUCT SUPPORT

MINIMUM 2 DIAMETERS OF

STRAIGHT DUCT OR PROVIDE

EQUALIZING GRID AT DIFFUSER —

OFFSET NO GREATER THAN D/8

WHEN FLEXIBLE RISER IS USED —

ACEMEN REPL

HVAC CHOOLS

PASSAGE MIDDLE SCHOOL
NEWPORT NEWS PUBLIC S

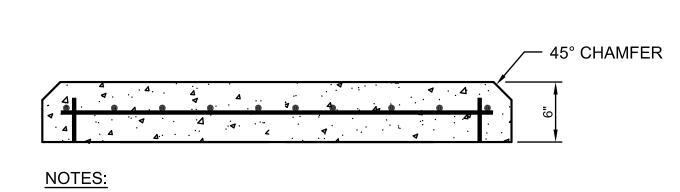
MARY

PIPE HANGER SUPPORT DETAIL

NOTE: EXTERNALLY INSULATE HOT WATER RE-HEAT COIL AND COIL PIPING CONNECTIONS TO

(WITH HOT WATER RE-HEAT COIL) INSTALLATION DETAIL

 $\overline{\hspace{0.1cm}}^{\hspace{0.1cm}}$ PREVENT CONDENSATION ON PIPING AND U-BENDS WHEN CONTROL VALVE IS CLOSED.


TYPICAL SERIES FAN POWERED VAV BOX

PIPE INSULATION WITH

-CALCIUM SILICATE

PIPE INSERT (TYP)

VAPOR BARRIER

DOWEL PAD INTO EXISTING FLOOR IN FOUR CORNERS

(ISOLATION) VALVE (TYP)-

2. PROVIDE 6" THICK 3500 - PSI AIR-ENTRAINED FIBER REINFORCED CONCRETE. PROVIDE #4 EPOXY COATED BARS AT 12" ON CENTER EACH WAY. PROVIDE WITH 45 DEGREE CHAMFERED EDGES. BROOM FINISH.

REMOVE FORMING, GROUT VOIDS.

CONCRETE PAD DETAIL

BALANCING BUTTERFLY VALVE (TYP

RUBBER FLEXIBLE CONNECTOR (TYP)-

VERTICAL LIFT CHECK VALVE-

CONCENTRIC REDUCER

PUMP BASE —

BASE MOUNTED END SUCTION PUMP PIPING DETAIL

4" CONCRETE PAD

COUPLING GUARD-

OF CONDENSER WATER PUMPS)

LOW VELOCITY DUCTWORK—

MEDIUM PRESSURE FLEXIBLE

DUCTWORK (MAX. 3'-0" LONG)-

RECOMMENDATION-

NOT TO SCALE

STRAIGHT RUN DUCT CONNECTION

DIMENSION PER MANUFACTURER'S

24" CLEARANCE

FLEXIBLE CONNECTOR—

HOT WATER REHEAT

COIL (SEE NOTE)-

ACEMEN

HVAC

REPL

PASSAGE MIDDLE SCHOOL
NEWPORT NEWS PUBLIC S

MARY

COMM NO: DESIGNED BY: DRAWN BY:

M4.2

01/26/2024

CHECKED BY:

DATE:

SERVICE DISCONNECT SWITCH. **BLOWER/MOTOR** ACCESS DOOR 24" SERVICE CLEARANCE REQ. STRAIGHT DUCT PER AMCA*

RISER ON HOOD AND FAN NCAFA BELT DRIVE CENTRIFUGAL UP-BLAST EXHAUST FANS DIMENSIONAL DATA

	CENTRIFUGAL OF-BLAST EXHAUST FANS DIMENSIONAL DATA									
	CUBE-240HP-VGD	HT	W	В	С	F	RO	WEIGHT LB.		
	DIMENSIONS	33-3/8"	43"	2"	34"	29-1/2"	24"	156		
•										

-GREASE DRAIN

-EXISTING DUCTWORK

BETWEEN EXHAUST

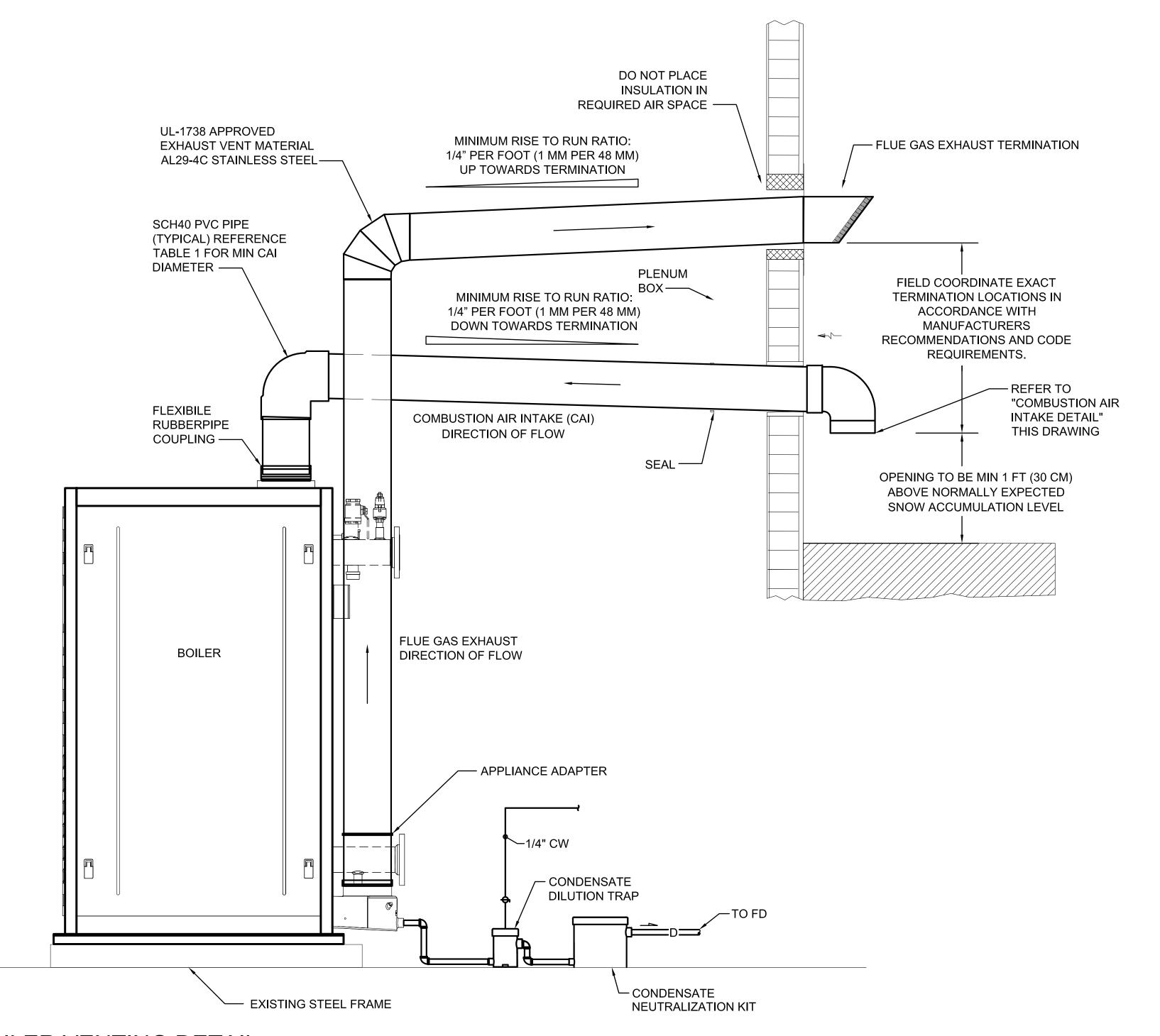
KITCHEN MAU AND EXHAUST FAN DETAIL NOT TO SCALE

(KMAU-1, 2 AND KEF-1, 2)

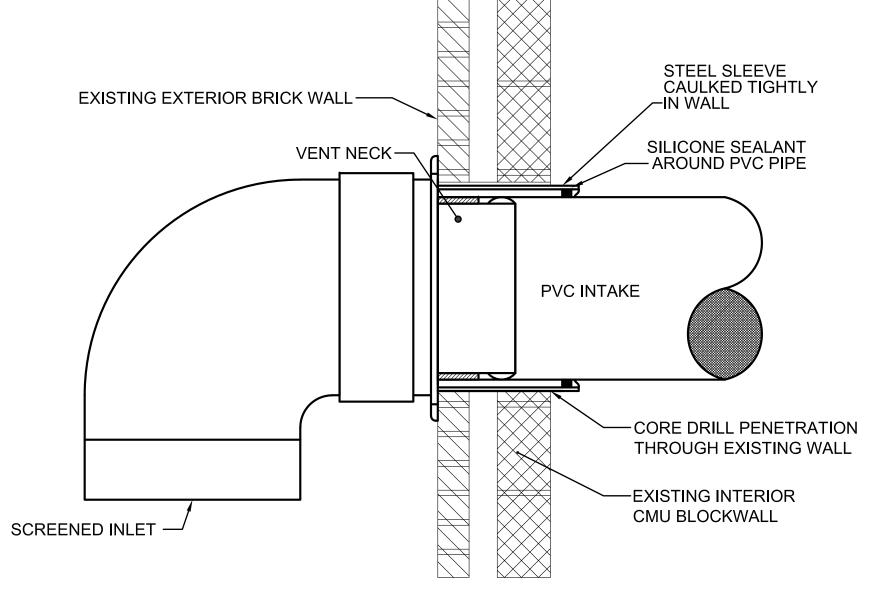
←45° CHAMFER (TYP) ∽#4 BARS @ 12" O.C. **EACH WAY** -CORE DRILL AND 1. DOWEL PAD INTO EXISTING FLOOR IN FOUR CORNERS. EMBED BARS 8" INTO EXISTING SLAB 2. PROVIDE 4" THICK 3500 - PSI AIR-ENTRAINED FIBER REINFORCED CONCRETE. PROVIDE #4 EPOXY COATED BARS AT 12" ON CENTER EACH WAY. FRAME CORNERS WITH 1-1/2" ANGLE TO MATCH EXISTING HOUSEKEEPING PADS. BROOM FINISH. PROVIDE WITH 45 DEGREE CHAMFERED EDGES.

3. REMOVE FORMING, GROUT VOIDS.

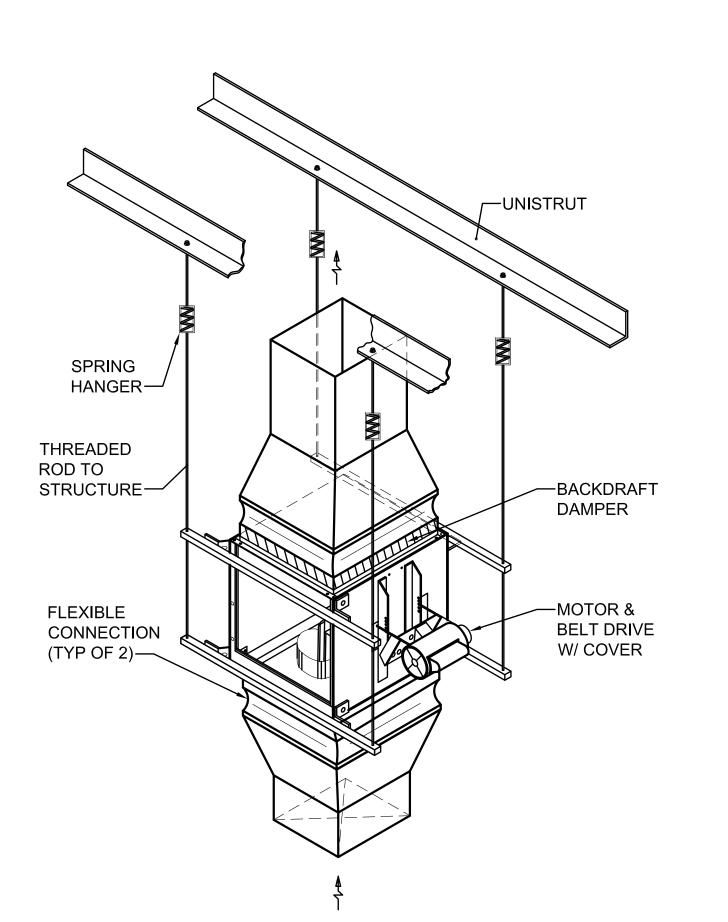
CONCRETE HOUSEKEEPING PAD EXTENSION DETAIL NOT TO SCALE

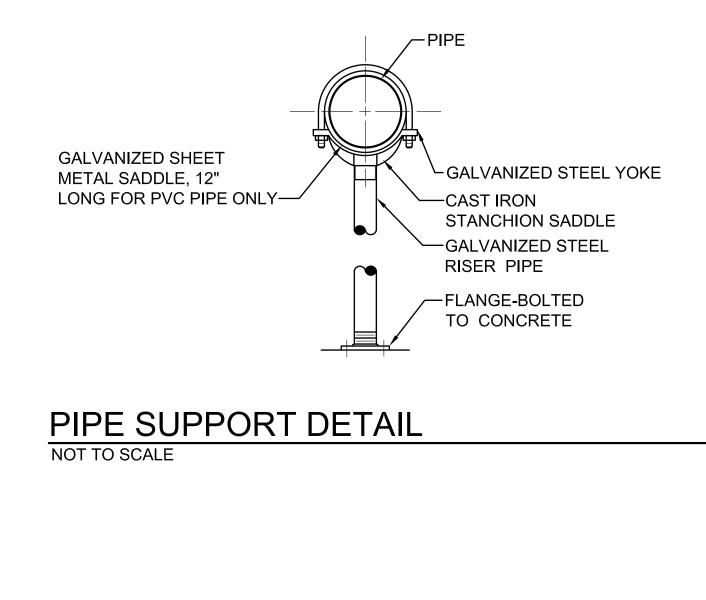

REFRIGERATION MACHINERY ROOM AUTHORIZED PERSONNEL ONLY

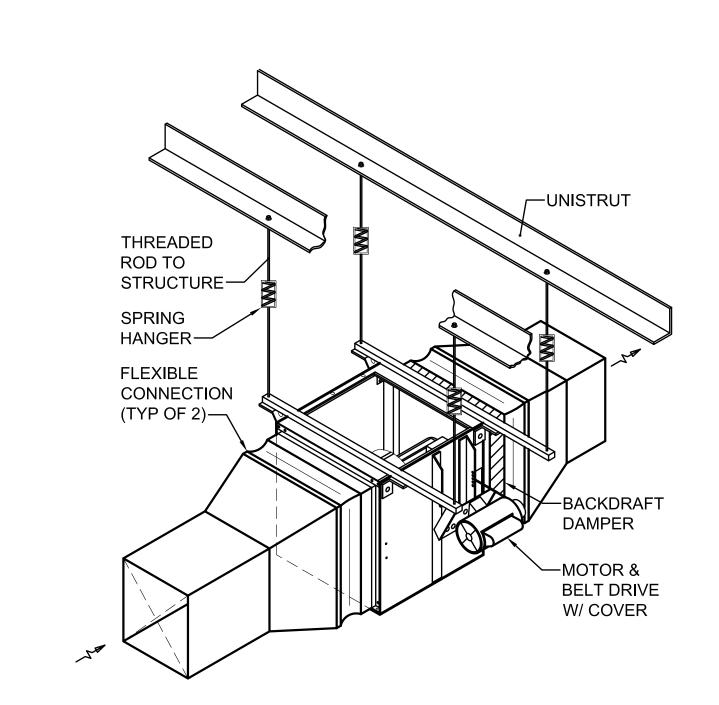
REFRIGERATION MACHINERY ROOM SIGN


▲WARNING

Alarm signal indicates refrigerant leak detected Evacuate monitored area immediately


REFRIGERANT LEAK WARNING SIGN


BOILER VENTING DETAIL NOT TO SCALE (TYPICAL FOR <u>B-1</u> AND <u>B-2</u>)



COMBUSTION AIR INTAKE DETAIL NOT TO SCALE (TYP. B-1 AND B-2, ALL SCHOOLS)

IN-LINE EXHAUST FAN DETAIL NOT TO SCALE

IN-LINE EXHAUST FAN DETAIL

CHILLED WATER PLANT DIAGRAM

NOT TO SCALE

POINT NAME	ŀ	HARDWAI	RE POINT	ΓS		WARE NTS	TREND	 ALARM	SHOW ON GRAPHIC
1 0.111 17 1112	Al	AO	DI	DO	AV	DV		,,	
CW SYSTEM ENABLE						Х	†		X
OUTSIDE AIR TEMP	X						T X		X
CONDENSER WATER RETURN TEMP	X						T X	X	X
CONDENSER WATER SUPPLY TEMP	Х						T X	Х	Х
CT-1 FAN 1 START/STOP				X					Х
CT-1 FAN 1 STATUS			X				T X		Х
CT-1 FAN 1 FAULT			X					X	Х
CT-1 FAN 1 SPEED	X						T X		Х
CT-1 FAN 2 START/STOP				X					Х
CT-1 FAN 2 STATUS			X				T X		Х
CT-1 FAN 2 FAULT			X				†	X	X
CT-1 FAN 2 SPEED	X						T X		X
CHILLED WATER RETURN TEMP	X						X	X	X
CHILLED WATER SUPPLY TEMP	X						$\frac{1}{x}$	X	X
P-1 START/STOP				X			X		X
P-1 STATUS			X	 ^			X	X	X
P-1 SPEED					X		$\frac{1}{x}$		X
P-1 DIFFERENTIAL PRESSURE	X						$\frac{1}{x}$	X	X
P-1 RUNTIME	X							X	X
P-2 START/STOP				X			X		X
P-2 STATUS			X				X	X	X
P-2 SPEED					X		$\frac{1}{x}$		X
P-2 DIFFERENTIAL PRESSURE	X						$\frac{1}{x}$	X	X
P-2 RUNTIME	X							X	X
P-3 START/STOP				X			X		X
P-3 STATUS			X				$\frac{1}{x}$	X	X
P-3 SPEED					Х		X		X
P-3 DIFFERENTIAL PRESSURE	X						X	X	X
P-3 RUNTIME	X							X	X
P-4 START/STOP				X			X		X
P-4 STATUS			X				$\frac{1}{x}$	X	X
P-4 SPEED					Х		X		X
P-4 DIFFERENTIAL PRESSURE	X						$\frac{1}{x}$	X	X
P-3 RUNTIME	X							X	X
V-3 POSITION	X						X		X
V-4 POSITION	X						$\frac{1}{x}$		X
CHILLED WATER FLOW	X						X		X
CW SUPPLY TEMP SETPOINT RESET		X					X		X
CHILLER STATUS			X				X		X
CHILLER ENABLE			 	X			 		X
CHILLED WATER FLOW SETPOINT			 	 ^	X		X	 	X
CHILLER FAILURE		†	 	†		Х	 	X	X
CHILLER RUNNING IN LOCAL MODE		†	 	†		X	+	X	X
CHILLER RUNTIME	X						+	X	X
HIGH CW SUPPLY TEMP					X		+	X	X
LOW CW SUPPLY TEMP				1	X		+	X	X
LOW CHILLED WATER FLOW				1	X		+	X	X
HEAT TRACE - ENABLE		1		X			+	X	X

NOTE: THE GRAPHICS SHALL INCLUDE THE SETPOINT DISPLAY FOR EACH CONTROLLED OR MONITORED VARIABLE.

CHILLED WATER PLANT DDC POINTS LIST

CHILLED WATER PLANT SEQUENCE OF OPERATION

THE CONDENSER/CHILLED WATER SYSTEM SHALL FUNCTION ACCORDING TO THE EXISTING SEQUENCES OF OPERATION, FULLY INTEGRATING ALL NEW EQUIPMENT. THE FOLLOWING SEQUENCE HAS BEEN GATHERED FROM EXISTING CONTROLS DRAWINGS. WHERE THE BELOW SEQUENCE VARIES FROM THE EXISTING SEQUENCE, THE EXISTING SEQUENCE SHALL BE FOLLOWED. THE CONTRACTOR SHALL ALERT THE ENGINEER TO ANY SIGNIFICANT VARIATIONS IN THE EXISTING SEQUENCE AS COMPARED TO THE SEQUENCE ENUMERATED BELOW.

CHILLED WATER SYSTEM CONTROLS:

BACNET |

PREVIOUS CONTROLLER ———

NEXT CONTROLLER -

BACNET COMM TO _____

CHILLER 1 (C-1): UPON A RISE IN OUTSIDE AIR TEMPERATURE ABOVE A PREDETERMINED SETPOINT (54°F ADJ.) AS DETERMINED BY THE OUTSIDE AIR TEMPERATURE SENSOR LOCATED IN THE OUTDOOR AIR INTAKE OF AHU-6, AND UPON A CALL FOR COOLING BY ANY AIR HANDLING UNIT WITH A FAN STATUS OF "ON", THE BAS WILL ISSUE A START COMMAND TO THE PACKAGED PUMPING SYSTEM. THE PUMPING SYSTEM WILL OPERATE UNDER ITS OWN CONTROLS TO SATISFY THE REQUIREMENTS OF THE CHILLER AND HAIR HANDLING UNITS. WHEN WATER FLOW IS ESTABLISHED AS DETERMINED BY PUMP STATUS DIFFERENTIAL PRESSURE SWITCHES, THE BAS WILL ISSUE A START COMMAND TO THE CHILLER, AND COOLING TOWER WILL BE ENABLED. THE CHILLER WILL THEN START ACCORDING TO ITS OWN SELF-CONTAINED CONTROL SYSTEM AND WILL LOAD IN ACCORDANCE WITH "CHILLER LOADING AND UNLOADING". THE COOLING TOWERS WILL BE CONTROLLED IN ACCORDANCE WITH "COOLING TOWER" BELOW. UPON A FALL IN OUTSIDE AIR TEMPERATURE BELOW SETPOINT (44°F ADJ.), THE BAS WILL ISSUE A STOP COMMAND TO THE CHILLER AND A FREE COOLING COMMAND TO THE PACKAGED PUMPING SYSTEM.

CHILLER LOADING AND UNLOADING:

CHILLERS WILL BE EQUIPPED FROM THE FACTORY TO LOAD AND UNLOAD BASED ON A 4-20mA SIGNAL PROVIDED BY THE BAS. THE BAS WILL, ON A RISE IN CHILLED WATER TEMPERATURE ABOVE SETPOINT (44°F ADJ.), LOAD THE CHILLER TO MAINTAIN LEAVING WATER TEMPERATURE. CHILLED WATER SUPPLY TEMPERATURE WILL BE AS SENSED BY A TEMPERATURE SENSOR LOCATED IN CWS PIPING. THE CHILLER WILL CONTINUE TO OPERATE UNTIL ISSUED A STOP COMMAND UNDER CHILLED WATER SYSTEM.

COOLING TOWER (CT-1):

GENERAL: THE COOLING TOWERS WILL MAINTAIN CONDENSER WATER TEMPERATURE AT SETPOINT (85°F ADJ.). IF CONDENSER WATER PUMPS ARE OFF, COOLING TOWER FANS WILL BE OFF AND THE BYPASS VALVES WILL BE IN THE BYPASS POSITION.

SYSTEM START-UP:

THE SYSTEM WILL RUN AS DETERMINED BY THE OFF-AUTO SWITCHES LOCATED ON THE VFD CONTROL CABINETS. THESE TWO MODES WILL BE **EXECUTED AS FOLLOWS:**

OFF: CONDENSER WATER PUMPS OFF, COOLING TOWER FANS OFF, AND THE BYPASS VALVES IN THE BYPASS POSITION.

AUTO: THIS POSITION WILL ALLOW FULLY AUTOMATIC OPERATION OF THE FAN SYSTEM AS DIRECTED BY THE BAS. THIS IS THE NORMAL AND PREFERRED METHOD OF OPERATION.

MECHANICAL COOLING (CHILLER) OPERATION:

ALTERNATE CELL OPERATION: ONLY ONE CELL IS REQUIRED TO OPERATE DURING MECHANICAL COOLING OPERATION. TOWER CELLS WILL ALTERNATE OPERATION EVERY 14 DAYS. IF ONE OF THE TOWER CELLS SHOULD FAIL TO OPERATE FOR ANY REASON, THE BAS WILL START THE REMAINING CELL WHICH WILL OPERATE INDEPENDENTLY, INCLUDING OPERATION OF SPRAY VALVES AND FANS, AS NEEDED TO MAINTAIN CONDENSER WATER SUPPLY TEMPERATURE. AN ALARM WILL BE SENT TO THE HEAD END STATING THAT ONE OF THE CELLS HAS FAILED TO OPERATE.

FREE COOLING WATER TEMPERATURE CONTROL:

IF FREE COOLING WATER SUPPLY TEMPERATURE RISES ABOVE SETPOINT (40°F ADJ) AS SENSED BY THE TEMPERATURE SENSOR IN THE CONDENSER WATER SUPPLY PIPING LOCATED IN THE CHILLER ROOM; THE BAS WILL MODULATE THE LEAD CELL DIVERTING VALVE CAUSING WATER TO FLOW OVER THE TOWER FILL. IF THE WATER TEMPERATURE CONTINUES TO RISE THE BAS WILL MODULATE THE LAG CELL DIVERTING VALVE CAUSING WATER TO FLOW OVER THE TOWER FILL. ON A CONTINUED RISE IN WATER TEMPERATURE, THE LEAD CELL FAN WILL START. THE TEMPERATURE SENSOR WILL FUNCTION AS INPUT TO THE BAS (AND THUS TO THE VFD) SUCH THAT A RISE IN CONDENSER SUPPLY TEMPERATURE WILL RESULT IN A PROPORTIONAL INCREASE IN LEAD CELL FAN SPEED TO MAINTAIN SETPOINT. ONCE THE FAN IN CELL ONE HAS REACHED ITS MAXIMUM SPEED, THE BAS WILL START THE LAG CELL. A CONTINUED RISE IN CONDENSER WATER SUPPLY TEMPERATURE WILL RESULT IN A PROPORTIONAL INCREASE IN LAG CELL FAN SPEED TO MAINTAIN SETPOINT. ON A FALL IN FREE COOLING WATER SUPPLY TEMPERATURE, THE REVERSE WILL OCCUR.

CHILLED WATER AND CONDENSER WATER PUMPS:

THE BAS WILL MONITOR AND REPORT PUMP STATUS, SPEED, AND FLOW RATE TO THE HEAD END.

REFRIGERANT SENSOR:

SENSOR TO CONTROL CHILLER ROOM EXHAUST FAN AND ALARM BACK TO THE BAS. SENSOR WILL MONITOR AND RECORD LONG TERM REFRIGERANT LEVELS.

CHILLER:

ALL CONTROL PANEL DISPLAY LANGUAGE SHALL REPORT BACK TO THE BAS HEAD END.

EMERGENCY PROCEDURES:

LOSS OF NETWORK COMMUNICATION: ON A LOSS OF NETWORK COMMUNICATION, THE CHILLED WATER AND CONDENSER WATER SYSTEM CONTROLLERS SHALL DEFAULT TO THE OFF MODE (USER SELECTABLE BETWEEN ENABLE OR OFF MODE) AND OPERATE AS A STAND ALONE UNIT.

LOSS OF POWER:

UPON RESTORATION OF POWER, THE SYSTEM MAIN JACE CONTROLLER WILL POLL INDIVIDUAL CONTROLLERS TO VERIFY COMMUNICATION. IF THE CONTROLLER IS ONLINE AND COMMUNICATING, THAN THE MAIN JACE CONTROLLER WILL UPDATE EACH CONTROLLER AND RESUME NORMAL OPERATION. CONTROLLERS WHICH DO NOT COMMUNICATE WITH THE MAIN JACE CONTROLLER WILL BE NOTED AS BEING OFFLINE.

EMEN

Ш

EWS

GE MIDDLE NEWPORT NE

S

 \triangleleft

MAR

HVAC CHOOL SO

DESIGNED BY: CHECKED BY: KDA

M5.

COMM NO:

DRAWN BY:

© COPYRIGHT THOMPSON CONSULTING ENGINEERS

DATE: 01/26/2024

SEQUENCE OF OPERATION

- A. THE BOILER MANUFACTURER'S CONTROLS WILL CONTROL THE STAGING OF THE BOILERS BASED ON LOAD DEMAND. THE DDC WILL START HEATING WATER PUMPS AND ENABLE THE BOILERS THROUGH THE BOILER MANUFACTURER'S SEQUENCING PANEL, AND PROVIDE A SIGNAL TO THE MANUFACTURER'S CONTROL PANEL TO CONTROL THE HEATING WATER SUPPLY TEMPERATURE TO THE BUILDING. BOILERS WILL OPERATE IN SEQUENCE AND MAINTAIN LEAVING HEATING WATER TEMPERATURE THROUGH THEIR OWN CONTROLS BASED ON AN EXTERNAL HEATING WATER TEMPERATURE CONTROL SIGNAL FROM THE DDC SYSTEM. IF THE SYSTEM LOAD SHOULD BEGIN TO FALL BELOW THE LOAD CAPACITY OF THE BOILERS. THE BOILER MANUFACTURER'S SEQUENCING CONTROL PANEL WILL SEQUENCE OFF BOILERS SO THAT NO MORE BOILERS ARE IN OPERATION THAN IS REQUIRED TO MEET THE REDUCED LOAD. THE BOILER MANUFACTURER'S SEQUENCING CONTROL PANEL WILL ALTERNATE LEAD AND LAG BOILERS ON A WEEKLY BASIS. THE DDC CONTROLS WILL ENABLE AND DISABLE THE BOILER SEQUENCING CONTROL PANEL, MONITOR HEATING WATER SUPPLY AND RETURN TEMPERATURE, AND MONITOR BOILER ALARM STATUS. THE BOILER SEQUENCING CONTROL PANEL WILL OPEN THE MOTORIZED ISOLATION VALVE PRIOR TO ENABLING ANY BOILER AND CLOSE THE VALVE AFTER ANY BOILER IS DISABLED.
- B. HEATING WATER PUMP CONTROL (TYPICAL FOR EXISTING PUMPS P-1 AND P-2):
- 1. THE DDC CONTROL SYSTEM FOR THE HOT WATER PUMPS SHALL BE DESIGNED TO START AND STOP THE PUMPS AND MODULATE THEIR SPEED AS REQUIRED BY SYSTEM DEMANDS. THE SYSTEM SHALL MAINTAIN DIFFERENTIAL PRESSURE AT A REMOTE LOCATION FOR THE HOT WATER SYSTEM AS INDICATED ON THE PLANS. THE SETPOINT SHALL BE USED TO PROPERLY CONTROL THE PRESSURE IN THE SYSTEM AND OPTIMIZE THE PUMP OPERATION AND SYSTEM OPERATION. THE DDC CONTROLLER SHALL HAVE FIELD PROGRAMMABLE INDEPENDENT SETPOINTS, THE VALUE OF WHICH SHALL BE THE OPTIMUM DIFFERENTIAL PRESSURE AS DESIGNED FOR EACH REMOTE LOCATION AND AS SHOWN ON THE PLANS, PROVIDED MORE THAN ONE IS REQUIRED.
- 2. DOWNSTREAM DIFFERENTIAL PRESSURE CONTROL: AFTER THE LEAD HEATING WATER PUMP (P-1) HAS STARTED, AS PREVIOUSLY DESCRIBED, THE DDC WILL CONTROL PUMP SPEED TO MAINTAIN DOWNSTREAM HEATING WATER DIFFERENTIAL PRESSURE AT ITS SETPOINT. THE DOWNSTREAM DIFFERENTIAL PRESSURE TRANSMITTER WILL INPUT THE DOWNSTREAM HEATING WATER DIFFERENTIAL PRESSURE TO THE DDC. SHOULD THE DOWNSTREAM HEATING WATER DIFFERENTIAL PRESSURE BEGIN TO FALL BELOW ITS SETPOINT, THE DDC WILL SIGNAL THE PUMP VFD TO INCREASE PUMP SPEED. ON A CONTINUED FALL IN DIFFERENTIAL PRESSURE, WHEN THE LEAD HOT WATER PUMP (P-1) HAS REACHED ITS MAXIMUM FLOW, THE DDC SHALL START THE LAG HOT WATER PUMP (P-2). UPON PROOF OF LAG HOT WATER PUMP OPERATION, THE DDC SHAL MODULATE BOTH EXISTING PUMPS P-1 AND P-2TO MAINTAIN HOT WATER DIFFERENTIAL PRESSURE. SHOULD THE DOWNSTREAM HEATING WATER DIFFERENTIAL PRESSURE BEGIN TO RISE ABOVE ITS SETPOINT, THE REVERSE SHALL OCCUR. THE MINIMUM SPEED ALLOWABLE AT EACH PUMP VFD SHALL BE 20 HZ.

- C. BOILER CONTROL:
- 1. THE BOILER SYSTEM CONTROLS SHALL BE INTEGRATED TO THE BUILDING DDC SYSTEM THROUGH BACNET MS/TP INTERFACE FOR MONITORING. ALL CONTROL WIRING WILL BE VIA HARD WIRED CONNECTIONS.
- 2. AFTER THE DDC HAS STARTED THE LEAD HEATING WATER PUMPS, AS PREVIOUSLY DESCRIBED, THE DDC WILL ENABLE THE LEAD BOILER THROUGH THE BOILER MANUFACTURER'S SEQUENCING CONTROL PANEL. THE LEAD BOILER WILL START AND OPERATE TO MAINTAIN LEAVING HEATING WATER TEMPERATURE AT ITS SETPOINT THROUGH ITS OWN CONTROLS.
- 3. THE BOILER MANUFACTURER'S SEQUENCING CONTROL PANEL SHALL SELECT A DIFFERENT BOILER WEEKLY TO ACT AS THE MAIN, INDEXING THE OTHER BOILER AS LAG BOILER.
- 4. THE BOILER MANUFACTURER'S SEQUENCING CONTROL PANEL SHALL STAGE THE BOILERS TO MAXIMIZE TIME SPENT AT THE LOWEST FIRING RATE, MAXIMIZING EFFICIENCIES.
- D. HEATING WATER RESET CONTROL:
 - 1. THE BOILER MANUFACTURER'S SEQUENCING CONTROL PANEL SHALL RESET THE HEATING WATER SUPPLY TEMPERATURE INVERSELY WITH RESPECT TO THE OUTSIDE AIR TEMPERATURE AS MONITORED BY THE DDC SYSTEM BY CONTROLLING THE BOILER SUPPLY WATER TEMPERATURE IN ACCORDANCE WITH THE FOLLOWING SCHEDULE: WHEN THE OUTSIDE AIR TEMPERATURE IS 20°F (ADJ.), THE HEATING WATER SUPPLY TEMPERATURE SHALL BE 140°F AND WHEN THE OUTSIDE AIR TEMPERATURE IS 65°F (ADJ.), THE HEATING WATER SUPPLY TEMPERATURE SHALL BE 110°F.
 - 2. SHOULD THE HEATING WATER SUPPLY TEMPERATURE BEGIN TO FALL BELOW ITS CALCULATED SETPOINT, THE BOILER MANUFACTURER'S SEQUENCING CONTROL PANEL SHALL SEQUENCE ON ADDITIONAL BOILER AS REQUIRED TO MAINTAIN HEATING WATER RESET SETPOINT. SHOULD THE HEATING WATER SUPPLY TEMPERATURE BEGIN TO RISE ABOVE ITS CALCULATED SETPOINT, THE REVERSE WILL OCCUR.
- E. THE BOILER POWER SUPPLY SHALL BE HARD WIRED TO AN EMERGENCY STOP BUTTON. WHEN THE BUTTON IS ENABLED, ALL BOILERS SHALL LOSE POWER AND STOP. THE GAS SOLENOID VALVES WITHIN THE BOILER SHALL CLOSE.
- WHEN RUNTIME OF ONE BOILER OR PUMP EXCEEDS THAT OF THE OTHER BOILER OR PUMP BY 400 HOURS (ADJ.), THE DDC SYSTEM SHALL ISSUE AN ALARM.
- G. UPON DETECTION OF CARBON MONOXIDE CONCENTRATION OVER THE ACCEPTABLE LIMIT (10 PPM), THE BAS SHALL DISABLE THE BOILERS. AN AUDIBLE ALARM SHALL BE GENERATED FROM ANNUNCIATOR PANELS LOCATED IN THE MECHANICAL ROOM AND AN ALARM SHALL BE GENERATED AT THE OWNER'S WORKSTATION.
- H. THE BAS SHALL ALTERNATE LEAD AND LAG PUMPS ON A WEEKLY BASIS.

POINT NAME	HARDWARE POINTS					WARE NTS	TREND	ALARM	SHOW ON GRAPHIC
	Al	AO	BI	ВО	AV	BV	1		
HW SYSTEM ENABLE						Х			Х
OUTSIDE AIR TEMP					Х		Х		Х
HW RETURN TEMP	Х						Х	Х	Х
HW SUPPLY TEMP	Х						Х	Х	Х
BOILER ENABLE COMMAND (TYP OF 2)				Х					Х
BOILER STATUS (TYP OF 2)			Х				Х		Х
BOILER FAULT (TYP OF 2)			Х					Х	Х
B-1 ISOLATION VALVE POSITION				Х					Х
B-2 ISOLATION VALVE POSITION				Х					Х
P-1 START/STOP				Х					Х
P-1 STATUS			Х				Х		Х
P-1 SPEED			Х					Х	Х
P-1 VFD FAULT			Х					Х	Х
P-1 RUNTIME	Х							Х	Х
P-1 FAILURE						Х		Х	Х
P-2 START/STOP				Х					Х
P-2 STATUS				Х			Х		Х
P-2 SPEED			Х				Х	Х	Х
P-2 VFD FAULT			Х					Х	Х
P-2 RUNTIME	Х							Х	Х
P-2 FAILURE						Х		Х	Х
CARBON MONOXIDE ALARM	Х		Х			Х	Х	Х	Х
BOILER LOW WATER LEVEL (TYP OF 2)			Х			Х	Х	Х	Х
BOILER ALARM STATUS (TYP OF 2)			Х				Х	Х	Х
BOILER RUNNING IN HAND (TYP OF 2)			Х			Х		Х	Х
BOILER RUNTIME (TYP OF 2)	Х							Х	X
BOILER FIRING RATE (TYP OF 2)				Х					Х
HIGH PRIMARY HWS TEMP (TYP OF 2)	Х							Х	X
LOW PRIMARY HWS TEMP (TYP OF 2)	Х							Х	Х
HIGH HW DIFFERENTIAL PRESSURE	Х							Х	Х
HIGH HOT WATER SUPPLY TEMP	Х							Х	Х
LOW HW DIFFERENTIAL PRESSURE	X							Х	Х

NOTE: THE GRAPHICS SHALL INCLUDE THE SETPOINT DISPLAY FOR EACH CONTROLLED OR MONITORED VARIABLE. ALL POINTS INCLUDED IN THE BOILER MANUFACTURER'S CONTROL PANEL SHALL BE ACCESSIBLE FROM THE OWNER'S GRAPHICAL WORKSTATION.

HOT WATER SYSTEM POINTS LIST

	HOT WATER RETURN TEMPERATURE
BACNET COMM FROM PREMIOUS CONTROLLER BACNET COMM FROM PREMIOUS CONTROLLER BACNET COMM TO MEXT GONTROLLER BACNET GONTROLLER BACNET GONTROLLER BACNET MS/TP TO INTERFACE WITH BAS BACNET GONTROLLER BACNET GONTROLLER BACNET GONTROLLER BACNET MS/TP TO INTERFACE WITH BAS BOLLER MANUFACTURER'S CENTRAL CONTROLLER SEQUENCING CONTROL PAREL (INTEGRAL WITH BOLLERS)	PHYSISIANS WALL MOUNTED TRANSMITTER PHYSISIANS PHYSISIANS PHYSIOS CONTROL FR PACTOR COMPANY NEXT COMPANY NEXT COMPANY PRESSURE PHYSIOS CONTROL FR PACTOR COMPANY NEXT COMPANY PRESSURE PHYSIOS CONTROL FR PACTOR COMPANY PRESSURE PHYSIOS CONTROL FR PACTOR COMPANY NEXT COMPANY PRESSURE OUTSIDE AIR TEMPERATURE SENSOR BY BOILER MANUFACTURER OUTSIDE AIR TEMPERATURE SENSOR BY BOILER MANUFACTURER

HOT WATER HEATING CONTROL DIAGRAM

ltin

ACEMEN

SAGE MIDDLE SCHOOL HVAC

PAS

DESIGNED BY: CHECKED BY:

AHU 1, 2, AND 7 DDC CONTROLS DIAGRAM

NOT TO SCALE

GRAPHICAL USER INTERFACE MAIN SCREEN										
	HARDWARE POINTS			S	SOFT	WARE PO	INTS	ALA	RMS	
POINT NAME	Al	АО	DI	DO	AV	DV	TREND	NON- CRITICAL ALARM RENO	CRITICAL ALARM RENO	SHOW ON GRAPHIC
OUTSIDE AIR DAMPER		Х					X			X
RETURN AIR DAMPER		Х					X			X
MIXING DAMPER		Х					Х			X
EXHAUST AIR DAMPER		Х					Х			X
OUTSIDE AIR CFM	Х						Х			X
EXHAUST FAN CFM	Х						Х			X
SUPPLY FAN CFM	Х						Х			X
MIXED AIR TEMPERATURE	Х						Х		Х	X
SUPPLY FAN SPEED		Х					Х			X
EXHAUST FAN START/STOP				Х			Х			X
EXHAUST FAN STATUS			Х				Х			X
EXHAUST FAN VFD FAULT			Х				Х		Х	X
EXHAUST FAN SPEED		Х					Х			X
DOWN DUCT STATIC PRESSURE	Х						Х	Х		X
SUPPLY STATIC PRESSURE HIGH LIMIT			Х				Х		Х	X
BUILDING STATIC PRESSURE	X						Х			Χ
LOW LIMIT THERMOSTAT			Х				Х		Х	X
SMOKE DETECTION			Х				Х		Х	X
BIPOLAR IONIZATION MONITORING			Х				Х	X		X
SUPPLY STATIC PRESSURE SETPOINT					Х		Х			X
SUPPLY AIR TEMPERATURE SETPOINT					Х		Х			X
PREHEAT AIR TEMPERATURE SETPOINT					Х		Х			X
FAILED POINTS					Х			X		X
LOW TEMPERATURE DISCHARGE (+/- 5 FROM SETPOINT)					Х			X		X
ROOM TEMPERATURE DEVIATION FROM SETPOINT					Х			X		X
CONDENSATE OVERFLOW PROTECTION			Х				Х		Х	X

NOTE: 1. THE GRAPHICS SHALL INCLUDE THE SETPOINT DISPLAY FOR EACH CONTROLLED VARIABLE. 2. EXHAUST FANS LOCATED IN EACH AIR HANDLER ZONE SHALL BE SHOWN ON THE AIR HANDLER GRAPHIC PAGE.

AHU 1, 2, AND 7 POINTS LIST

NOTE: PROVIDE AND INSTALL NEW CONTROL AND VFD CABINETS ON UNITS ALONG WITH NEW CONTROLLER. REMOVE EXISTING CONTROL AND VFD CABINETS. DO NOT REUSE.

VAV AIR HANDLING UNIT

- A. AT OCCUPANCY TIME, THE DDC CONTROLLER SHALL MODULATE THE OUTSIDE AIR DAMPER OPEN TO MAINTAIN A MINIMUM OUTSIDE AIR CFM AS MEASURED BY THE AIRFLOW STATION, CLOSING THE RETURN AIR DAMPER A PROPORTIONAL AMOUNT.
- ON A FALL IN PREHEAT DISCHARGE TEMPERATURE TO THE SETPOINT OF THE DDC CONTROLLER, THE DDC CONTROLLER SHALL MODULATE THE HOT WATER HEATING COIL CONTROL VALVE TO MAINTAIN SETPOINT.
- C. ON A RISE IN SUPPLY AIR TEMPERATURE TO THE SETPOINT OF THE DDC CONTROLLER, THE DDC CONTROLLER SHALL MODULATE THE HOT WATER VALVE CLOSED. ON A FURTHER RISE IN DISCHARGE AIR TEMPERATURE, THE DDC SHALL CLOSE THE HOT WATER VALVE. ON A FURTHER RISE IN DISCHARGE AIR TEMPERATURE THE DDC CONTROLLER SHALL MODULATE THE OUTSIDE AIR DAMPER OPEN CLOSING THE RETURN AIR DAMPER A PROPORTIONAL AMOUNT FOR FREE COOLING. WHENEVER THE SETTING OF THE MIXED AIR TEMPERATURE LOW LIMIT IS REACHED, THE DDC CONTROLLER SHALL MODULATE THE OUTSIDE AIR DAMPER CLOSED TO ITS PRESET MINIMUM POSITION OPENING THE RETURN AIR DAMPER A PROPORTIONAL AMOUNT. WHENEVER THE OUTSIDE AIR TEMPERATURE RISES ABOVE THE SETPOINT OF THE DDC CONTROLLER, THE DDC CONTROLLER SHALL DISABLE THE ECONOMIZER CYCLE. ON A FURTHER RISE IN SUPPLY AIR TEMPERATURE, THE DDC CONTROLLER SHALL MODULATE THE CHILLED WATER VALVE OPEN TO THE COIL.
- D. AT OCCUPANCY TIME THE SUPPLY FAN SHALL BE ENABLED. THE DDC CONTROLLER SHALL SUPPLY A VOLTAGE INPUT TO THE SUPPLY AIR FAN VARIABLE FREQUENCY DRIVES (VFD) TO MAINTAIN DUCT STATIC PRESSURE SETPOINT AS MEASURED BY THE STATIC SENSOR LOCATED IN THE SUPPLY AIR DUCT. THE DDC CONTROLLER SHALL CONTINUOUSLY MONITOR THE PRIMARY AIR VALVE POSITION ON ALL TERMINAL VAV BOXES AND RESET THE SUPPLY DUCT STATIC PRESSURE SETPOINT SO THAT AT LEAST ONE TERMINAL VAV BOXES PRIMARY AIR VALVE IS AT LEAST 95% OPEN. WHENEVER THE DISCHARGE STATIC PRESSURE RISES ABOVE THE STATIC HIGH-PRESSURE SETPOINT, AS SENSED BY THE STATIC PRESSURE FAN SWITCH LOCATED IN THE FAN DISCHARGE, THE SUPPLY AND EXHAUST FAN SHALL BE DISABLED AND A MANUAL RESET WILL BE REQUIRED.
- ON A RISE IN SPACE PRESSURE TO THE SETPOINT OF THE DDC CONTROLLER, THE DDC CONTROLLER SHALL OPEN THE EXHAUST AIR DAMPER ENABLING THE EXHAUST FAN VFD TO MAINTAIN SPACE PRESSURE SETPOINT AS MEASURED BY THE STATIC PRESSURE SENSOR LOCATED IN THE SPACE. ON A FALL IN SPACE PRESSURE TO THE SETPOINT OF THE DDC CONTROLLER, THE REVERSE SEQUENCE SHALL OCCUR.
- F. FREEZE PROTECTION: SHOULD THE AIR TEMPERATURE INSIDE THE UNIT CABINET DROP TO 40°F (ADJ) OR BELOW, THE LOW LIMIT THERMOSTAT SHALL DISABLE THE SUPPLY FAN, THE OUTSIDE AIR AND EXHAUST AIR DAMPERS SHALL CLOSE, THE RETURN DAMPER SHALL OPEN, AND AN ALARM GENERATED. THE HOT WATER CONTROL VALVES SHALL MODULATE OPEN TO MAINTAIN MINIMUM CABINET TEMPERATURE.
- ON DETECTION OF PRODUCTS OF COMBUSTION, THE SMOKE DETECTOR SHALL STOP THE UNIT SUPPLY AIR FAN AND EXHAUST FAN, AND SEND A SIGNAL TO ALL ASSOCIATED VAV BOXES TO DISABLE THE BOX FANS.
- UNOCCUPIED MODE: WHEN THE BUILDING IS INDEXED FOR UNOCCUPIED OPERATION, THE DDC SHALL DISABLE THE SUPPLY AND EXHAUST FANS, CLOSE THE CHILLED WATER CONTROL VALVE, CLOSE THE OUTSIDE AIR AND EXHAUST AIR DAMPERS AND OPEN THE RETURN AIR DAMPER.
- NIGHT SET-BACK: WHEN THE BUILDING IS INDEXED FOR UNOCCUPIED OPERATION, THE DDC SHALL DISABLE THE SUPPLY AND EXHAUST FANS, MODULATE THE HOT WATER CONTROL VALVE IN ACCORDANCE WITH PARAGRAPH F ABOVE, CLOSE THE OUTSIDE AIR AND EXHAUST AIR DAMPERS AND OPEN THE RETURN AIR DAMPER. WHEN THE SPACE TEMPERATURE FALLS BELOW 60°F (ADJ.), THE DDC SHALL CYCLE THE LOCAL FAN POWERED TERMINAL UNITS TO MAINTAIN SPACE TEMPERATURE.
- NIGHT SET-UP: WHEN THE SPACE TEMPERATURE RISES TO 85°F (ADJ.) OR ABOVE, THE DDC SHALL ENABLE THE SUPPLY FAN AND MODULATE THE CHILLED WATER CONTROL VALVE TO MAINTAIN COOLING SETPOINT. WHEN THE SPACE TEMPERATURE FALLS TO 80°F (ADJ.), THE DDC SHALL DISABLE THE SUPPLY FAN AND CLOSE THE CHILLED WATER CONTROL VALVE.
- K. WARM-UP: WHEN THE OPTIMAL START PROGRAM CALLS FOR WARM-UP OPERATION, THE DDC SHALL ENABLE THE SUPPLY FAN AND MODULATE THE HOT WATER HEATING COIL VALVE FULLY OPEN. THE UNIT SHALL OPERATE WITH 100% RETURN AIR UNTIL SETPOINT IS REACHED.
- COOL-DOWN: WHEN THE OPTIMAL START PROGRAM CALLS FOR COOL-DOWN OPERATION, THE DDC SHALL ENABLE THE SUPPLY FAN AND MODULATE OPEN THE CHILLED WATER CONTROL VALVE TO MAINTAIN SUPPLY COOLING SET POINT. THE UNIT SHALL OPERATE WITH 100% RETURN AIR UNTIL SETPOINT IS REACHED.

Z

OL IC S

CHO PUBL

EWS

GE MIDI

S

COMM NO. DESIGNED BY: DRAWN BY: CHECKED BY:

KDA

M5.3

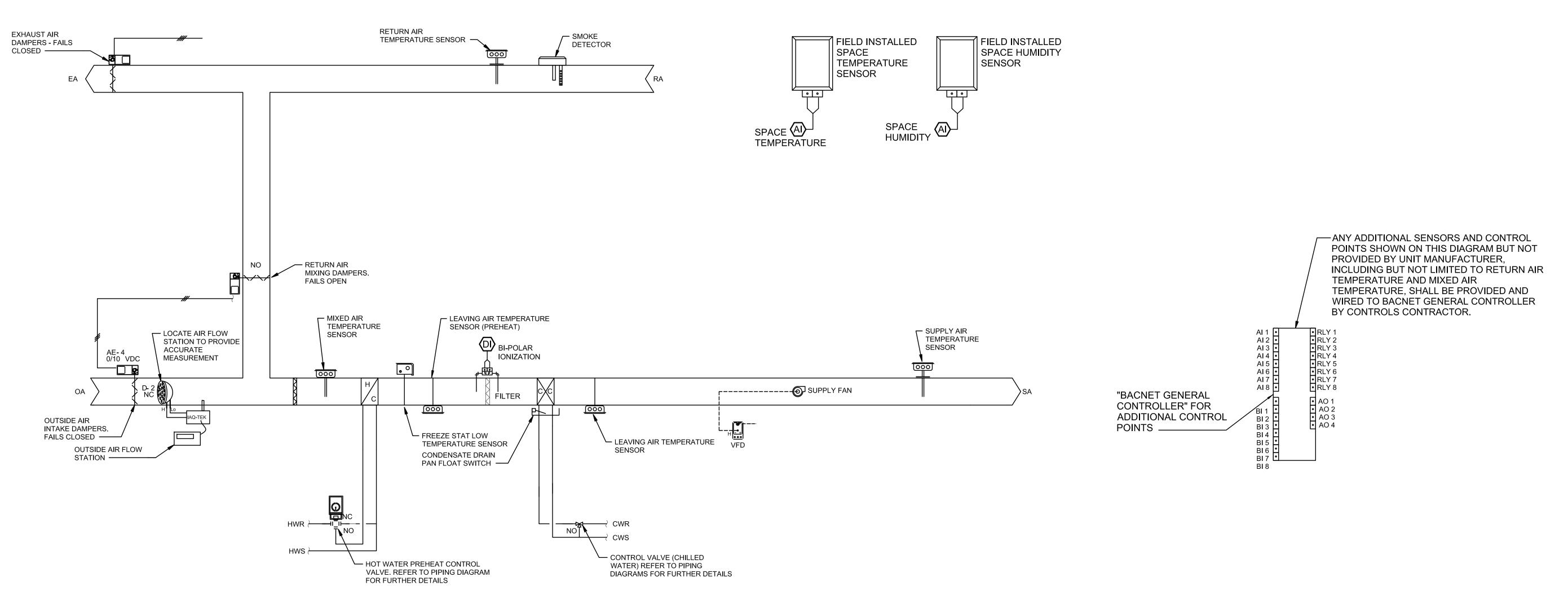
01/26/2024

© COPYRIGHT THOMPSON CONSULTING ENGINEERS

DATE:

EMEN

CHOOL |


EWS

GE MIDDLE NEWPORT NE

S

DESIGNED BY: C
DRAWN BY: J
CHECKED BY: K

M5.4

AHU-3, 5, 8, 9, AND 10 DDC CONTROL DIAGRAM

NOT TO SCAL

G	RAP	HICA	L US	SER I	NTER	FACE	E MAI	IN SCR	EEN			
	l l	HARDWAF	RE POINT	S	SOFT	WARE PO	INTS		ALA	RMS	I	
POINT NAME	AI	АО	DI	DO	AV	DV	TREND	NON- CRITICAL ALARM PRIORITY 6	NON- CRITICAL ALARM PRIORITY 5	RENO LESS CRITICAL ALARM PRIORITY 4	CRITICAL ALARM	SHOW ON GRAPHIC
MIXED AIR DAMPER		X					Х					X
EXHAUST AIR DAMPER		X					Х					Χ
OUTSIDE AIR CFM	X						X					X
SUPPLY FAN CFM	X						Х					Х
MIXED AIR TEMPERATURE	Х						Х		Х			Х
PREHEAT TEMPERATURE	Х						Х					Х
RETURN AIR TEMPERATURE	Х						Х					Х
HOT WATER VALVE		Х					Х					Х
CHILLED WATER VALVE		Х					Х					Χ
SUPPLY TEMPERATURE	Х						Х					Χ
SUPPLY FAN START/STOP				Х			Х					Χ
SUPPLY FAN STATUS			Х				Х				Х	Χ
SUPPLY FAN VFD FAULT			Х				Х				Х	Χ
SUPPLY FAN SPEED		Х					Х					Χ
LOW LIMIT THERMOSTAT			Х				Х				Х	Х
SMOKE DETECTION			Х				Х				Х	Х
BIPOLAR IONIZATION MONITORING			Х				Х		Х			Х
SPACE CO2	Х						Х		Х			Х
SPACE TEMPERATURE	Х						Х					X
SPACE TEMPERATURE OVERRIDE SETPOINT					Х		Х					Х
SPACE TEMPERATURE SETPOINT					Х		Х					Χ
SPACE HUMIDITY	Х						Х					Χ
SPACE HUMIDITY SETPOINT					Х		Х					Χ
HEAT TRACE (RAHU-4 ONLY)			Х								Х	Χ
FAILED POINTS					Х			Х				Χ
LOW TEMPERATURE DISCHARGE (+/-5 FROM SETPOINT)					Х							Χ
ROOM TEMPERATURE DEVIATION (+/-5 FROM SETPOINT)					Х							Χ
CONDENSER OVERFLOW PROTECTION			Х								Х	Χ

NOTE: 1. THE GRAPHICS SHALL INCLUDE THE SETPOINT DISPLAY FOR EACH CONTROLLED VARIABLE.
2. EXHAUST FANS LOCATED IN EACH AIR HANDLER ZONE SHALL BE SHOWN ON THE AIR HANDLER GRAPHIC PAGE.

AHU-3, 5, 8, 9, AND 10 POINTS LIST

NOTE: PROVIDE AND INSTALL NEW CONTROL AND VFD CABINETS ON UNITS ALONG WITH NEW CONTROLLER. REMOVE EXISTING CONTROL AND VFD CABINETS. DO NOT REUSE.

CONSTANT VOLUME AIR HANDLING UNIT CONTROL (AHU-3, 5, 8, 9, AND 10)

- A. OCCUPIED MODE: WHEN THE BUILDING IS INDEXED FOR OCCUPIED OPERATION, AND IF THE UNIT IS NOT RUNNING ON WARM-UP, COOL-DOWN, OR OVERRIDE, THE DDC WILL OPEN THE OUTDOOR AIR DAMPER AND ENABLE THE SUPPLY FAN. THE DDC SHALL OPEN THE EXHAUST AIR DAMPER. THE UNIT 'S OUTSIDE AIR DAMPER SHALL BE OPENED TO THE "OCCUPIED" POSITION. DAMPER POSITIONS SHALL BE DETERMINED BY THE TAB CONTRACTOR.
- B. TEMPERATURE CONTROL: ON A FALL IN SPACE TEMPERATURE BELOW SETPOINT, THE DDC SHALL MODULATE THE HOT WATER PREHEAT COIL CONTROL VALVE OPEN. ON A CONTINUED FALL IN TEMPERATURE THE DDC SHALL MODULATE THE HOT WATER PREHEAT CONTROL VALVE OPEN. ON A RISE IN SPACE TEMPERATURE, THE DDC SHALL MODULATE THE CONTROL VALVE CLOSED. ON A FURTHER RISE IN THE SPACE TEMPERATURE ABOVE SETPOINT (ADJ.), THE DDC SHALL MODULATE THE CHILLED WATER CONTROL VALVE FULLY OPEN. ON A FALL IN SPACE TEMPERATURE, THE REVERSE SHALL OCCUR.
- C. FREEZE PROTECTION: SHOULD THE AIR TEMPERATURE INSIDE THE UNIT CABINET DROP TO 40°F OR BELOW, THE LOW LIMIT THERMOSTAT SHALL DISABLE THE SUPPLY FAN, THE OUTSIDE AIR AND EXHAUST AIR DAMPERS SHALL CLOSE, THE RETURN DAMPER SHALL OPEN, AND AN ALARM GENERATED. THE HOT WATER CONTROL VALVES SHALL MODULATE OPEN TO MAINTAIN MINIMUM CABINET TEMPERATURE.
- D. SMOKE CONTROL: SHOULD PRODUCTS OF COMBUSTION BE DETECTED, THE SUPPLY FAN WILL BE DISABLED, THE OUTDOOR AIR AND EXHAUST AIR DAMPERS WILL BE CLOSED, AND AN ALARM GENERATED.
- E. HUMIDITY CONTROL: ON A RISE IN SPACE HUMIDITY TO THE SETPOINT OF THE SPACE HUMIDISTAT SENSOR, THE DDC CONTROLLER SHALL MODULATE THE COOLING COIL CONTROL VALVE TO MEET HUMIDITY SETPOINT. SHOULD THE DEHUMIDIFICATION PROCESS CAUSE THE SPACE TO OVERCOOL, THE DDC CONTROLLER SHALL MODULATE THE SUPPLY FAN VFD TO SLOW THE FAN. ONCE THE FAN HAS REACHED EITHER THE 30% WIDE OPEN POSITION, OR THE SCHEDULED MINIMUM VENTILATION RATE, WHICHEVER IS HIGHER, THEN THE DDC CONTROLLER SHALL MODULATE THE HOT WATER REHEAT COIL VALVE TO MAINTAIN THE SPACE TEMPERATURE SETPOINT.
- F. UNOCCUPIED MODE: WHEN THE BUILDING IS INDEXED FOR UNOCCUPIED OPERATION, THE DDC SHALL DISABLE THE SUPPLY FAN, CLOSE THE CHILLED WATER AND HOT WATER CONTROL VALVES, CLOSE THE OUTSIDE AIR AND EXHAUST AIR DAMPERS, AND OPEN THE RETURN AIR DAMPER.
- G. NIGHT SET-BACK: WHEN THE SPACE TEMPERATURE FALLS BELOW SCHEDULED UNOCCUPIED HEATING SETPOINT (ADJ.), THE DDC SHALL ENABLE THE SUPPLY FAN AND MODULATE THE HOT WATER HEATING COIL CONTROL VALVE OPEN. WHEN THE SPACE TEMPERATURE RISES TO 65°F (ADJ.), THE DDC SHALL MODULATE THE HOT WATER CONTROL VALVE CLOSED AND DISABLE THE SUPPLY FAN.
- H. NIGHT SET-UP: WHEN THE SPACE TEMPERATURE RISES TO 5 DEG F ABOVE SCHEDULED UNOCCUPIED COOLING SETPOINT (ADJ.) OR ABOVE, THE DDC SHALL ENABLE THE SUPPLY FAN AND MODULATE OPEN THE CHILLED WATER CONTROL VALVE TO MAINTAIN SUPPLY COOLING SET POINT. WHEN THE SPACE TEMPERATURE FALLS TO BELOW SCHEDULED UNOCCUPIED COOLING SETPOINT (ADJ.), THE DDC SHALL DISABLE THE SUPPLY FAN AND CLOSE THE CHILLED WATER CONTROL VALVE.
- I. WARM-UP: WHEN THE OPTIMAL START PROGRAM CALLS FOR WARM-UP OPERATION, THE DDC SHALL ENABLE THE SUPPLY FAN AND MODULATE THE HOT WATER CONTROL VALVE TO MAINTAIN SUPPLY HEATING SETPOINT. THE UNIT SHALL OPERATE WITH 100% RETURN AIR UNTIL SETPOINT IS
- J. COOL-DOWN: WHEN THE OPTIMAL START PROGRAM CALLS FOR COOL-DOWN OPERATION, THE DDC SHALL ENABLE THE SUPPLY FAN AND MODULATE OPEN THE CHILLED WATER CONTROL VALVE TO MAINTAIN COOLING SETPOINT. THE UNIT SHALL OPERATE WITH 100% RETURN AIR UNTIL SETPOINT IS REACHED.

EMEN

Ш

CHO(

S

GE MIDDLE NEWPORT NE

22-113

KDA

COMM NO **DESIGNED BY:** DRAWN BY: CHECKED BY:

DATE: 01/26/2024

DDC CONTRACTOR SHALL CONNECT HIGH PRIMARY AIR VALVE FAN CONTACT BY UNIT MANUFACTURER, WIRED AND LOW PRESSURE PORTS TO VAV BY DDC CONTRACTOR CONTROLLER SUPPLY AIR **TEMPERATURE** SENSOR HOT WATER HEATING COIL **FILTER** PROVIDED THERMOSTAT SPACE TEMPERATURE (AI)

SERIES FAN POWERED TERMINAL UNIT CONTROL DIAGRAM

FAN POWERED SERIES VAV BOX WITH HOT WATER RE-HEAT

1. BUILDING AUTOMATION SYSTEM INTERFACE:

a. THE BUILDING AUTOMATION SYSTEM (BAS) SHALL SEND THE CONTROLLER OCCUPIED AND UNOCCUPIED COMMANDS. THE BAS MAY ALSO SEND A HEAT/COOL MODE, PRIORITY SHUTDOWN COMMANDS, SPACE TEMPERATURE AND/OR SPACE TEMPERATURE SETPOINT. IF COMMUNICATION IS LOST WITH THE BAS, THE VAV CONTROLLER SHALL OPERATE USING ITS LOCAL SETPOINTS.

2. OCCUPANCY MODE:

- a. THE OCCUPANCY MODE SHALL BE COMMUNICATED OR HARDWIRED TO THE VAV VIA A BINARY INPUT. VALID OCCUPANCY MODES FOR THE VAV SHALL BE:
- (1) OCCUPIED: NORMAL OPERATING MODE FOR OCCUPIED SPACES OR DAYTIME OPERATION. WHEN THE UNIT IS IN THE OCCUPIED MODE THE VAV SHALL MAINTAIN THE SPACE TEMPERATURE AT THE ACTIVE OCCUPIED HEATING OR COOLING SETPOINT. APPLICABLE VENTILATION AND AIRFLOW SETPOINTS SHALL BE ENFORCED. THE
- OCCUPIED MODE SHALL BE THE DEFAULT MODE OF THE VAV. (2) UNOCCUPIED: NORMAL OPERATING MODE FOR UNOCCUPIED SPACES OR NIGHTTIME OPERATION. WHEN THE UNIT IS IN UNOCCUPIED MODE THE VAV CONTROLLER SHALL MAINTAIN THE SPACE TEMPERATURE AT THE STORED UNOCCUPIED HEATING OR COOLING SETPOINT REGARDLESS OF THE PRESENCE OF A HARDWIRED OR COMMUNICATED SETPOINT. WHEN THE SPACE TEMPERATURE EXCEEDS THE ACTIVE UNOCCUPIED SETPOINT THE VAV SHALL MODULATE FULLY CLOSED.
- (3) OCCUPIED BYPASS: MODE USED TO TEMPORARILY PLACE THE UNIT INTO THE OCCUPIED OPERATION. TENANTS SHALL BE ABLE TO OVERRIDE THE UNOCCUPIED MODE FROM THE SPACE SENSOR. THE OVERRIDE SHALL LAST FOR A MAXIMUM OF 4 HOURS (ADJ.). THE TENANTS SHALL BE ABLE TO CANCEL THE OVERRIDE FROM THE SPACE SENSOR AT ANY TIME. DURING THE OVERRIDE THE UNIT SHALL OPERATE IN OCCUPIED MODE.

3. HEAT/COOL MODE:

a. THE HEAT/COOL MODE SHALL BE SET BY A COMMUNICATED VALUE OR AUTOMATICALLY BY THE VAV. IN STANDALONE OR AUTO MODE THE VAV SHALL COMPARE THE PRIMARY AIR TEMPERATURE WITH THE CONFIGURED AUTO CHANGEOVER SETPOINT TO DETERMINE IF THE AIR IS "HOT" OR "COLD". HEATING MODE SHALL COMMAND THE VAV TO HEAT ONLY; IT IMPLIES THE PRIMARY AIR TEMPERATURE IS HOT. COOLING MODE SHALL COMMAND THE VAV TO COOL ONLY; IT IMPLIES THE PRIMARY AIR TEMPERATURE IS COLD.

4. HEAT/COOL SETPOINT:

a. THE SPACE TEMPERATURE SETPOINT SHALL BE DETERMINED EITHER BY A LOCAL (E.G., THUMBWHEEL) SETPOINT, THE VAV DEFAULT SETPOINT OR A COMMUNICATED VALUE. THE VAV SHALL USE THE LOCALLY STORED DEFAULT SETPOINTS WHEN NEITHER A LOCAL SETPOINT NOR COMMUNICATED SETPOINT IS PRESENT. IF BOTH A LOCAL SETPOINT AND COMMUNICATED SETPOINT EXIST, THE VAV SHALL USE THE COMMUNICATED VALUE.

5. COOLING MODE:

a. WHEN THE UNIT IS IN COOLING MODE, THE VAV CONTROLLER SHALL MAINTAIN THE SPACE TEMPERATURE AT THE ACTIVE COOLING SETPOINT BY MODULATING THE AIRFLOW BETWEEN THE ACTIVE COOLING MINIMUM AIRFLOW SETPOINT TO THE MAXIMUM COOLING AIRFLOW SETPOINT. BASED ON THE VAV CONTROLLER OCCUPANCY MODE, THE ACTIVE COOLING SETPOINT SHALL BE ONE OF THE FOLLOWING:

SETPOINT OCCUPIED COOLING SETPOINT UNOCCUPIED COOLING SETPOINT OCCUPIED STANDBY COOLING SETPOINT SEE VAV SCHEDULE OCCUPIED MIN COOLING AIRFLOW SETPOINT

DEFAULT VALUE 74.0 DEG. F 85.0 DEG. F 78.0 DEG. F

OCCUPIED MAX COOLING AIRFLOW SETPOINT SEE VAV SCHEDULE

b. THE VAV SHALL USE THE MEASURED SPACE TEMPERATURE AND THE ACTIVE COOLING SETPOINT TO DETERMINE THE REQUESTED COOLING CAPACITY OF THE UNIT. THE OUTPUTS WILL BE CONTROLLED BASED ON THE UNIT CONFIGURATION AND THE REQUESTED COOLING CAPACITY.

6. HEATING MODE:

a. WHEN THE UNIT IS IN HEATING MODE, THE VAV CONTROLLER SHALL MAINTAIN THE SPACE TEMPERATURE AT THE ACTIVE HEATING SETPOINT BY MODULATING THE AIRFLOW BETWEEN THE ACTIVE HEATING MINIMUM AIRFLOW SETPOINT TO THE MAXIMUM HEATING AIRFLOW SETPOINT. BASED ON THE VAV CONTROLLER OCCUPANCY MODE, THE ACTIVE HEATING SETPOINT SHALL BE ONE OF THE FOLLOWING:

SETPOINT	DEFAULT VALUE
OCCUPIED HEATING SETPOINT	71.0 DEG. F
UNOCCUPIED HEATING SETPOINT	60.0 DEG. F
OCCUPIED STANDBY HEATING SETPOIN	NT 67.0 DEG. F
OCCUPIED MIN HEATING AIRFLOW SETI	POINT SEE VAV SCHEDULE
OCCUPIED MAX HEATING AIRFLOW SET	SEE VAV SCHEDULE

b. THE VAV CONTROLLER SHALL USE THE MEASURED SPACE TEMPERATURE AND THE ACTIVE HEATING SETPOINT TO DETERMINE THE REQUESTED HEATING CAPACITY OF THE UNIT. THE OUTPUTS WILL BE CONTROLLED BASED ON THE UNIT CONFIGURATION AND THE REQUESTED HEATING CAPACITY.

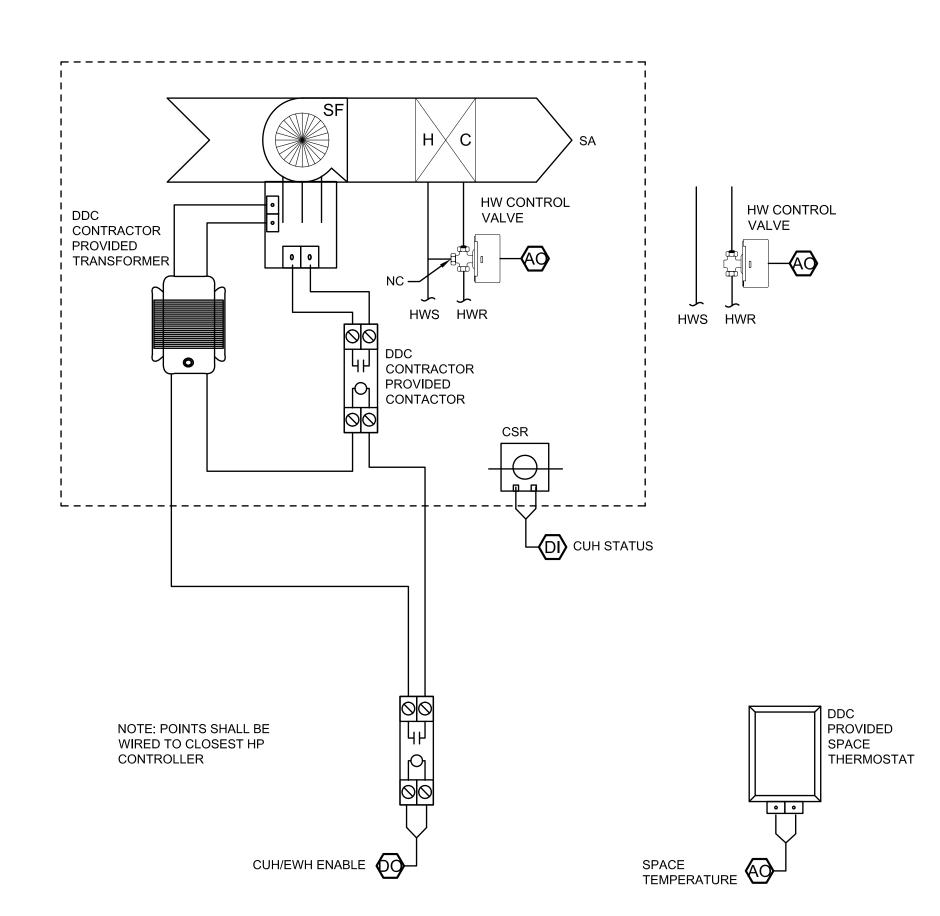
7. CONTINUOUS FAN CONTROL:

a. THE VAV FAN SHALL OPERATE CONTINUOUSLY IN ALL OCCUPIED MODES. DURING THE UNOCCUPIED MODE, THE PRIMARY AIR VALVE SHALL MODULATE FULLY CLOSED. THE TERMINAL FAN AND HEAT SHALL CYCLE AS NEEDED TO MAINTAIN A REDUCED SPACE TEMPERATURE.

8. REHEAT CONTROL:

- a. REHEAT SHALL ONLY BE ALLOWED WHEN THE PRIMARY AIR TEMPERATURE IS 5.0 DEG. F BELOW THE CONFIGURED REHEAT ENABLE SETPOINT OF 70.0 DEG. F (ADJ.). THE REHEAT SHALL BE ENABLED WHEN THE SPACE TEMPERATURE DROPS BELOW THE ACTIVE COOLING SETPOINT AND THE AIRFLOW IS AT THE MINIMUM COOLING AIRFLOW SETPOINT. DURING REHEAT THE VAV SHALL OPERATE AT ITS MINIMUM HEATING AIRFLOW SETPOINT AND ENERGIZE THE HEAT AS FOLLOWS:
- b. HOT WATER REHEAT: IF THE SPACE TEMPERATURE FALLS BELOW THE HEATING SETPOINT, THE HOT WATER REHEAT VALVE SHALL BE MODULATED OPEN AS REQUIRED TO MAINTAIN THE ACTIVE HEATING SETPOINT.

9. SPACE SENSOR FAILURE:

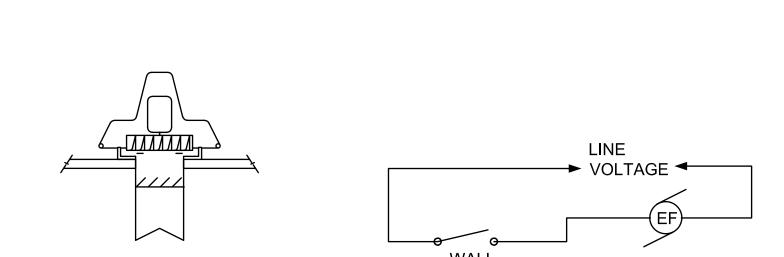

a. IF THERE IS A FAULT WITH THE OPERATION OF THE ZONE SENSOR AN ALARM SHALL BE ANNUNCIATED AT THE BAS. SPACE SENSOR FAILURE SHALL CAUSE THE VAV TO DRIVE THE DAMPER TO MINIMUM AIR FLOW IF THE VAV IS IN THE OCCUPIED MODE, OR DRIVE IT CLOSED IF THE VAV IS IN THE UNOCCUPIED MODE. THE SERIES FAN SHALL BE

ENABLED AND THE REHEAT WILL BE DISABLED.

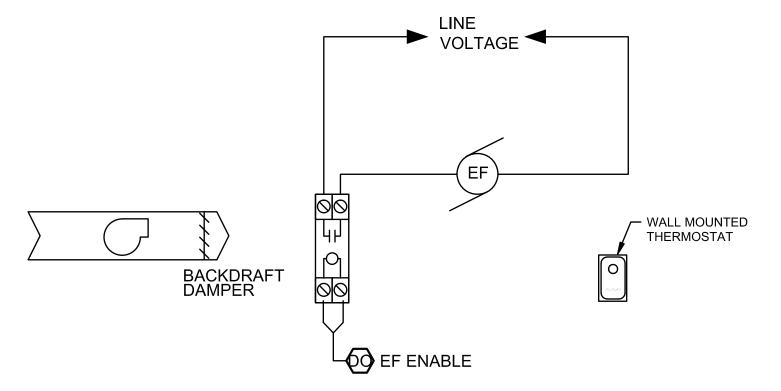
CONTROL SCHEDULE COOLING ROOM TEMPERATURE SETPOINT SUPPLY AIR REHEAT _____ COIL VALVE VALVE CLOSED FAN OPERATION OCCUPIED FAN OPERATION UNOCCUPIED ON OFF OFF ON

		Hardwa	re Points		Softwa	e Points					
POINT NAME	AI	AO	DI	DO	AV	DV	Trend	Alarm	Show on Graphic	DEFAULT VALUE	
SPACE TEMPERATURE	Х						Х	Х	X		
SPACE SETPOINT					Х		Х		Х		
DISCHARGE AIR TEMPERATURE	Х						Х	Х	Х		
FAN			Х				Х	Х	X		
HOT WATER VALVE				Х			Х	Х	X		
PRIMARY AIR CFM	Х								X		
BIPOLAR IONIZATION MONITORING			Х				Х	Х	X		
OCCUPANCY						Х					
OCCUPIED COOLING SETPOINT					Х					74°F	
OCCUPIED HEATING SETPOINT					Х					71°F	
UNOCCUPIED COOLING SETPOINT					Х					85°F	
UNOCCUPIED HEATING SETPOINT					Х					60°F	

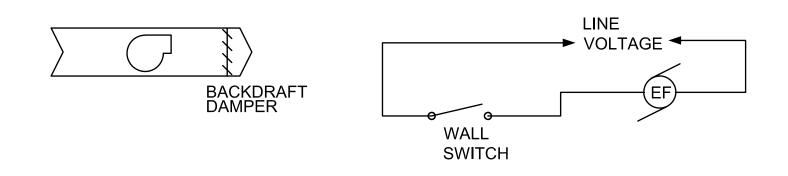
NOTE: THE GRAPHICS SHALL INCLUDE THE SETPOINT DISPLAY FOR EACH CONTROLLED OR MONITORED VARIABLE

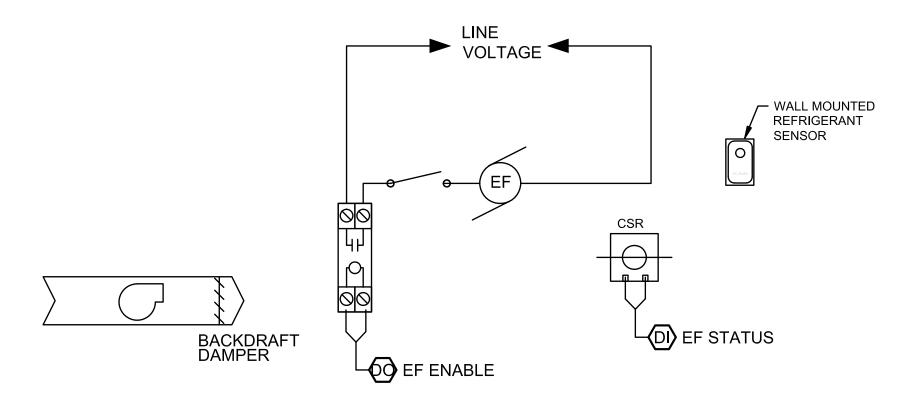


HOT WATER CABINET UNIT HEATER/UNIT HEATER NOT TO SCALE


UNIT HEATERS		Hardwa	re Points		Softwar	e Points				
POINT NAME	AI	AO DI		DO	AV DV		TREND	ALARM	SHOW ON GRAPHIC	
ENABLE/DISABLE				Х			Х	Х	Х	
SETPOINT		Х					Х	X	X	
SPACE TEMPERATURE	X						Х	Χ	Х	

UNIT HEATERS

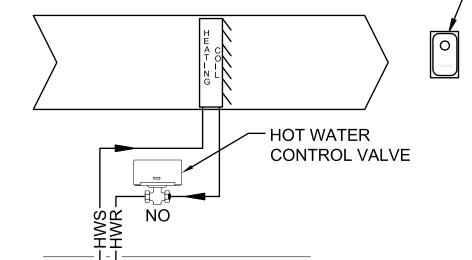

A. UNIT HEATERS SHALL BE CONTROLLED BY [WALL-MOUNTED THERMOSTATS]. ON A FALL IN SPACE TEMPERATURE BELOW SETPOINT, THE FAN SHALL BE STARTED AND THE FAN SHALL BE STARTED AND THE HOT WATER HEATING COIL CONTROL VALVE SHALL FULLY OPEN. ON A RISE IN SPACE TEMPERATURE, THE REVERSE SHALL OCCUR. THE INITIAL SETPOINT SHALL BE 65°F. THE DDC SHALL PROVIDE A DO POINT(S) FOR ENABLING/DISABLING THE UNIT FANS.


EF-3, 4, 5, 8 THRU 12, AND 16 DIAGRAM NOT TO SCALE

EF-13 DIAGRAM NOT TO SCALE

EF-1, 2, 6, AND 7 DIAGRAM

EF-15 DIAGRAM NOT TO SCALE


GENERAL EXHAUST FANS

- A. EXHAUST FANS 1 THROUGH 12 AND 16 SHALL BE CONTROLLED BY WALL MOUNTED SWITCHES ON A 60
- EXHAUST FAN 13 SHALL BE CONTROLLED BY A LINE VOLTAGE THERMOSTAT SET TO 95°F.
- EXHAUST FAN 15 SHALL BE CONTROLLED BY THE REFRIGERANT SENSOR MOUNTED IN THE MECHANICAL ROOM BY THE CHILLER. AN ALARM SHALL BE SENT TO THE DDC SYSTEM AND AUDIO AND VISUAL ANNUNCIATORS WHEN THE FAN IS ENABLED.

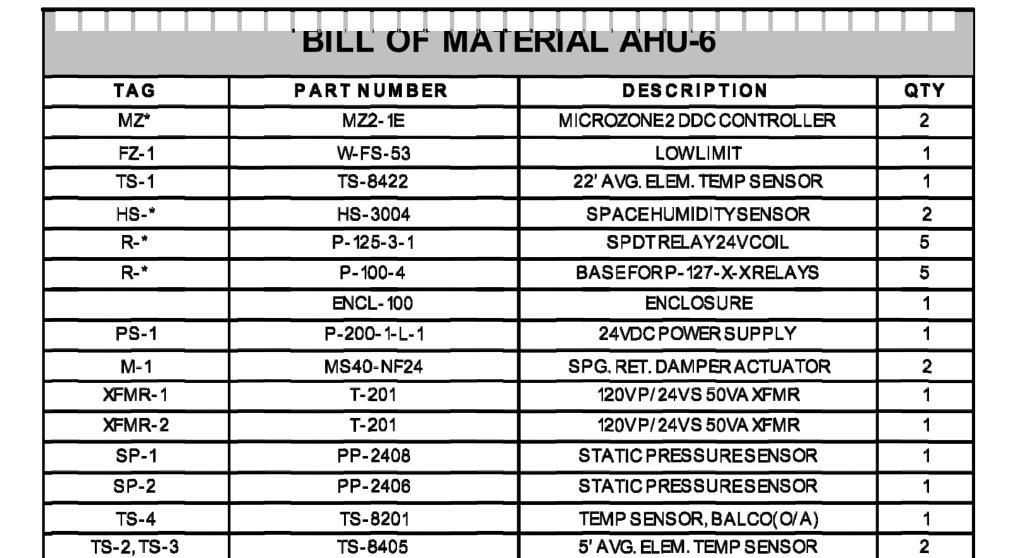
MISCELLANEOUS		Hardwar	e Points		Softwar	e Points			SHOW ON GRAPHIC	
POINT NAME	AI	AO	DI	DO	AV	BV	TREND	ALARM		
EXHAUST FANS									X	
ENABLE/DISABLE				Х			Χ	X (EF-15)	X	
STATUS			Х				X	Х	X	

EXHAUST FAN DIAGRAMS CONTROLS DIAGRAMS

	F	IARDWAF	RE POINT	S	SOFT	WARE POI	NTS					
POINT NAME	AI	AO	DI	DO	AV	DV	TREND	ALARM	CRITICAL ALARM	RENO LESS CRITICAL ALARM PRIORITY 4	CRITICAL ALARM	SHOW ON GRAPHIC
DUCT MOUNTED HEATING COIL				Х								X

DUCT MOUNTED HEATING COIL

A. THE DUCT HEATING COIL IS CONTROLLED BY A WALL MOUNTED LINE VOLTAGE THERMOSTAT. THE DDC SHALL HAVE A RELAY TO DISABLE HEAT OPERATION.


HOT WATER DUCT HEATING COIL

PASSAGE MIDDLE SCHOOL HVAC REPLACEMENT
NEWPORT NEWS PUBLIC SCHOOLS

DRAWN BY: CHECKED BY:

RANGE 0-5

IN.WC.

GENERAL DEMOLITION NOTES: (THIS SHEET ONLY)

- 1. EXISTING POINTS LIST, DIAGRAMS, AND SEQUENCES OF
- OPERATION FROM 2016 CHESAPEAKE CONTROLS, INC. INSTALLATION.
- EXISTING CONTROLS INFORMATION PROVIDED ON THIS ALL EXISTING TO REMAIN EQUIPMENT NOT MODIFIED DURING THIS PROJECT.

SEE DETAIL 11

SEE DETAIL 11

HS-2

onsulting

ACEMEN

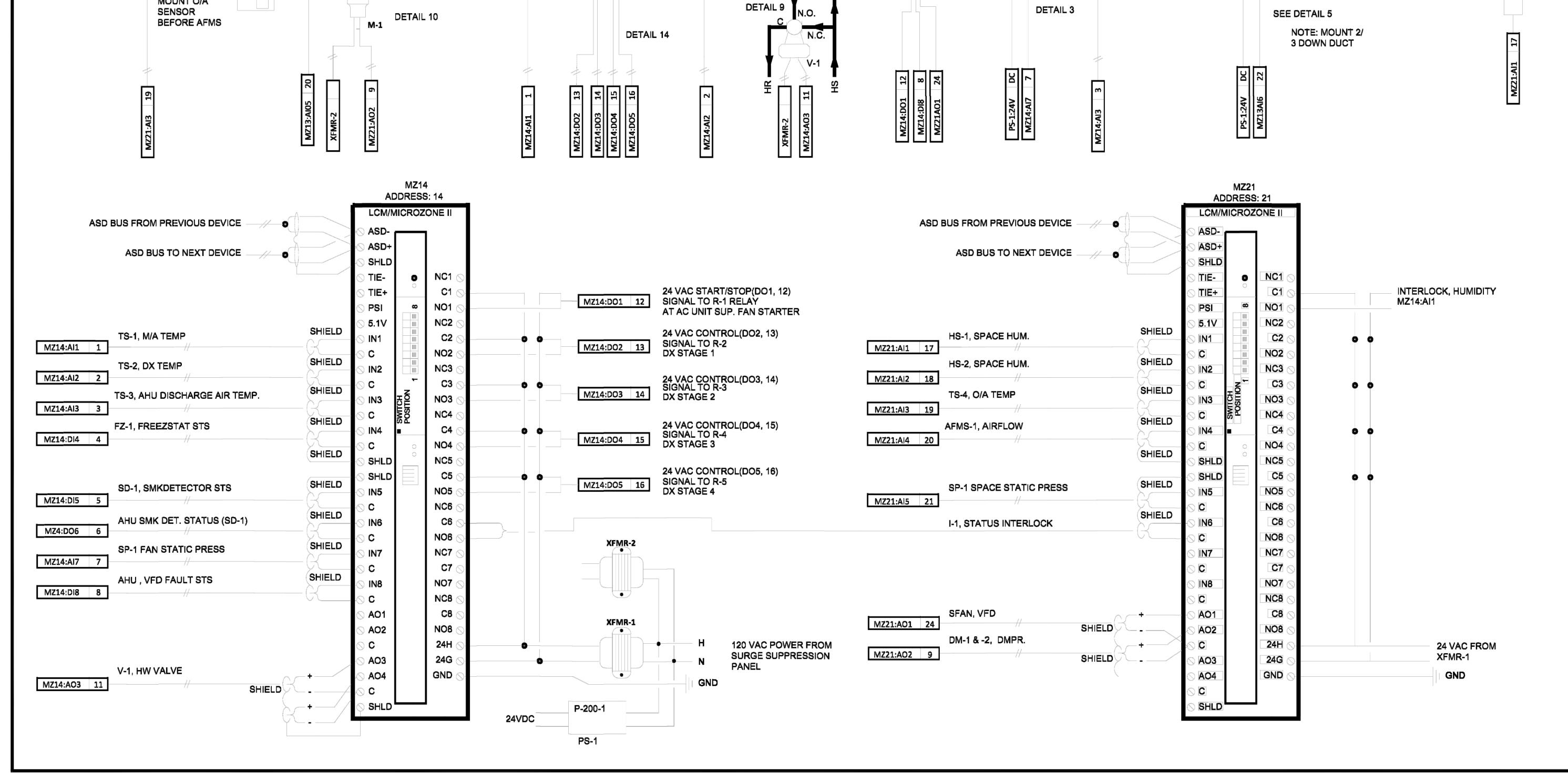
REPL/

HVAC

PASSAGE MIDDLE SCHOOL
NEWPORT NEWS PUBLIC S

MARY

COMM NO: DESIGNED BY: DRAWN BY: CHECKED BY:


JAR KDA

22-113

CEP

DATE: 01/26/2024

<u>AHU-6</u> **WIRING & DIAGRAM**

SMOKE DETECTOR SD-1

SEE DETAIL 15

MZ14:DI5 5

SD-1 NOTE: SMOKE

DIV 16.

N.O. RET DAMPER W/UNIT

-V///

N.C. OUTDOOR

DMPR. W/UNIT

▼ AIR FLOW (BY OTHERS) STATION

MOUNT O/A

OUTSIDE AIR

MINIMUM O.A.=24% 1260 CFM

DETECTOR BY

LOCATED IN THE RETURN DUCT

RETURN

AIR

MZ14:DI4 4

WIRE TO AHU FAN VFD (SEE DETAIL 4)

DETAIL 4

AHU SUPPLY FAN

RANGE 0-

7.5 IN.WC.

3471 CFM

: *=ADDTIONAL MISC. PARTS REQUIRED TO COMPLETE INSTALLTION : UNLESS OTHERWISE NOTED ALL WIRING

IS 2 COND. TWISTED/SHIELDED PAIR

NOTES : OBSERVE POLARITY ON ALL 24VAC

SEQUENCE OF OPERATION AHU-6

AHU-6 GENERAL:

AHU-6 IS A VARIABLE AIR VOLUME SYSTEM. SPEED OF THE FAN MOTOR WILL BE CONTROLLED BY ELECTRONIC VARIABLE FREQUENCY DRIVE UNITS (VFD). THE BAS WILL SIGNAL THE VFD TO MAINTAIN FAN RPM AS LOW AS POSSIBLE. ACTION ON THE SUPPLY FAN WILL BE DETERMINED BASED ON THE NEEDS OF THE VARIABLE VOLUME TERMINAL BOXES (VB'S) ON THE SYSTEM.

AHU-6 WILL HAVE OUTDOOR AIR MONITORING CAPABILITY AND WILL MAINTAIN THE QUANTITY OF OUTDOOR AIR SPECIFIED IN THE AIR HANDLING UNIT SCHEDULE ON THE DRAWINGS.

WHEN THE SUPPLY FAN IS NOT IN OPERATION, THE CONDENSING UNIT WILL BE OFF AND ALL DAMPERS WILL BE CLOSED. REHEAT COIL CONTROL VALVE WILL BE OPEN.

AHU-6 IS EQUIPED WITH A DX COIL. WHEN THE SUPPLY FAN IS IN OPERATION, THE RELIEF DAMPER WILL OPEN.

THE RETURN DAMPER WILL TRACK PROPORTIONALLY WITH THE OUTSIDE AIR DAMPER SUCH THAT WHEN THE OUTSIDE AIR DAMPER IS 100% OPEN THE RETURN DAMPER WILL BE CLOSED.

SETPOINT (INITIALLY 50 Deg.F.). ON A SUBSEQUENT FALL IN THE AVERAGE HUMIDITY TO SETPOINT, THE BAS WILL RETURN DISCHARGE AIR TEMPERATURE TO ITS NORMAL SETPOINT.

AHU-6 SYSTEM STARTUP:

THE SYSTEM WILL RUN AS DETERMINED BY THE OFF-AUTO SWITCHES LOCATED ON THE VFD CONTROL CABINET. THESE TWO MODES WILL BE EXECUTED AS FOLLOWS:

1. OFF: THE CONDENSING UNIT WILL BE OFF AND ALL DAMPERS WILL BE CLOSED. THE REHEAT COIL CONTROL VALVE WILL BE OPEN.

2. AUTO: THIS POSITION WILL ALLOW FULLY AUTOMATIC OPERATION OF THE FAN SYSTEMAS DIRECTED BY THE BUILDING AUTOMATION SYSTEM (BAS). THIS IS THE NORMAL AND PREFERRED METHOD OF OPERATION. WHEN THE SYSTEM IS TURNED ON BY THE BAS THE OUTDOOR AIR DAMPER. WILL REMAIN CLOSED DURING INITIAL BUILDING WARM-UP/COOL-DOWN. AHU-6'S VFD WILL ENERGIZE THE SUPPLY AIR FAN AND BEGIN AUTOMATICALLY TO CONTROL

FREQUENCY AS REQUIRED TO MAINTAIN DOWN-DUCT STATIC PRESSURE AT THE MINIMUM REQUIRED TO SATISFY THE NEEDS OF THE CRITICAL ZONE. THE CONDENSING UNIT WILL BE ENABLED.

AFTER MORNING WARM-UP/COOL-DOWN THE OUTDOOR AIR DAMPER WILL MODULATE TO MAINTAIN MINIMUM OUTDOOR AIR.

A STATIC PRESSURE SENSOR WILL BE LOCATED AT A POINT 2/3'S OF THE DISTANCE FROM THE SUPPLY FAN TO THE END OF THE LONGEST TRUNK DUCT. LOCATIONS WHICH RESULT IN EXTREME VARIATIONS IN STATIC PRESSURE DUE TO TERMINAL BOX OPERATION WILL BE AVOIDED. THE STATIC PRESSURE SENSOR WILL FUNCTION AS THE CONTROL INPUT TO THE BAS DISTRIBUTED PROCESSOR (AND THUS TO THE VFD) SUCH THAT A FALL IN DOWN-DUCT STATIC PRESSURE WILL RESULT IN A PROPORTIONAL INCREASE IN SUPPLY FAN SPEED TO MAINTAIN SETPOINT. THE STATIC PRESSURE SETPOINT WILL BE DETERMINED IN ACCORDANCE WITH THE NEXT PARAGRAPH. ON A RISE IN DOWN-DUCT STATIC PRESSURE, THE REVERSE WILL OCCUR.

INITIAL MAXIMUM STATIC PRESSURE SETPOINT WILL BE 1.0 INCHES W.G. AND WILL BE ADJUSTABLE. DOWN DUCT STATIC PRESSURE SETPOINT: THE BUILDING AUTOMATION SYSTEM WILL CONTINUOUSLY MONITOR THE DAMPER POSITION OF ALL VARIABLE AIR VOLUME TERMINAL DISTRIBUTION BOXES (VB'S). WHEN ANY DAMPER OPENS BEYOND THE MAXIMUM SETPOINT (INITIALLY 95%), THE BAS WILL RESET THE DOWN-DUCT STATIC PRESSURE SETPOINT UPWARD BY 5 % (ADJUSTABLE) OF THE MAXIMUM STATIC PRESSURE SETPOINT. THIS WILL OCCUR AT 10 MINUTE (ADJUSTABLE) INTERVALS UNTIL NO DAMPER IS MORE THAN 95% OPEN, OR THE STATIC PRESSURE HAS RESET TO THE SYSTEM MAXIMUM SETTING, OR THE VFD'S ARE AT THEIR MAXIMUM SETTING. WHEN ALL DAMPERS ARE OPENED LESS THAN THE MINIMUM SETPOINT (INITIALLY 85%), THE BAS WILL RESET THE DOWN-DUCT STATIC PRESSURE SETPOINT DOWNWARD BY 5% (ADJUSTABLE) OF THE MAXIMUM SYSTEM STATIC PRESSURE SETPOINT. THIS WILL OCCUR AT 10 MINUTE INTERVALS (ADJUSTABLE) UNTIL ANY DAMPER IS MORE THAN 85% OPEN, OR THE VFD'S ARE AT THEIR MINIMUM SETTING.

A SECOND STATIC PRESSURE SENSOR LOCATED IN THE SUPPLY FAN DISCHARGE DUCT WILL FUNCTION AS A SAFETY INPUT TO THE DISTRIBUTED PROCESSOR. AN INCREASE IN FAN DISCHARGE STATIC PRESSURE ABOVE SETPOINT (INITIALLY 3 INCHES W.G.) WILL CAUSE THE DISTRIBUTED PROCESSOR TO STOP THE FAN. AN ALARM WILL BE SENT TO THE BAS THAT THE UNIT HAS BEEN SHUT DOWN DUE TO FAN OVER-SPEED.

AHÚ-6 SUPPLY FAN DISCHARGE AIR TEMPERATURE CONTROL

OCCUPIED: ON A RISE IN DISCHARGE AIR TEMPERATURE, THE BAS WILL START CONDENSING UNIT 1 AND WILL STAGE THE COMPRESSORS ON AS REQUIRED TO MAINTAIN SETPOINT (INITIALLY 54 Deg.F.). CONDENSING UNIT # 1 WILL BE EQUIPPED WITH HOT GAS BYPASS FOR PART LOAD OPERATION. ON A SUBSEQUENT FALL IN DISCHARGE AIR TEMPERATURE THE REVERSE WILL OCCUR.

ON A CONTINUED FALL IN UNIT DISCHARGE AIR TEMPERATURE TO 2 Deg.F. BELOW SETPOINT THE BAS WILL MODULATE THE REHEAT COIL CONTROL VALVE OPEN TO MAINTAIN 2 Deg.F. BELOW SETPOINT. ON A RISE TO 2 Deg.F. BELOW SETPOINT, THE VALVE WILL CLOSE. UNOCCUPIED: ON A RISE IN DISCHARGE AIR TEMPERATURE, THE BAS WILL START CONDENSING UNIT 1 AND WILL STAGE THE COMPRESSORS ON AS REQUIRED TO MAINTAIN SETPOINT (INITIALLY 54 Deg.F.). CONDENSING UNIT # 1 WILL BE EQUIPPED WITH

HOT GAS BYPASS FOR PART LOAD OPERATION. ON A SUBSEQUENT FALL IN DISCHARGE AIR TEMPERATURE THE REVERSE WILL OCCUR. ON A CONTINUED FALL IN UNIT DISCHARGE AIR TEMPERATURE TO 2 Deg.F. BELOW SETPOINT THE BAS WILL MODULATE THE REHEAT COIL CONTROL VALVE OPEN TO MAINTAIN 2 Deg.F. BELOW SETPOINT. ON A RISE TO 2 Deg.F. BELOW SETPOINT, THE VALVE

AHU-6 OCCUPIED/UNOCCUPIED:

OCCUPANCY TIMES: WILL BE DETERMINED BY BUILDING OCCUPANTS AND SUBSEQUENTLY PROGRAMMED INTO THE BAS.

OCCUPIED: THE BAS WILL KEEP THE OUTDOOR AIR DAMPER OPEN TO ITS MINIMUM REQUIRED POSITION, AS DEFINED BELOW.

UNOCCUPIED: THE BAS WILL CLOSE THE OUTDOOR AIR DAMPER.

AHU-6 OUTDOOR AIR DAMPER CONTROL:

MINIMUM OUTDOOR AIR:

WILL CLOSE.

OCCUPIED MODE: THE BAS WILL INSTITUTE A MINIMUM OUTDOOR AIR SETPOINT AS REQUIRED BY THE AIR HANDLING UNIT SCHEDULE ON THE DRAWINGS. THE AIRFLOW MEASURING STATION IN THE OUTDOOR AIR INTAKE WILL ACT AS AN INPUT TO THE BAS WHICH WILL IN TURN MODULATE THE OUTDOOR AIR DAMPER. IF THE OUTDOOR AIR FLOW FALLS BELOW SETPOINT, THE OUTDOOR AIR DAMPER WILL MODULATE OPEN. THIS WILL CONTINUE UNTIL SETPOINT IS ACHIEVED. IF THE OUTDOOR AIRFLOW INCREASES ABOVE SETPOINT THE REVERSE WILL OCCUR.

UNOCCUPIED MODE: THE BAS WILL INSTITUTE A ZERO CFM MINIMUM SETPOINT.

AHU-6 HUMIDITY CONTROL: DEHUMIDIFICATION: ON A RISE IN THE AVERAGE READING OF TWO SPACE RELATIVE HUMIDITY SENSORS ABOVE SETPOINT (INITIALLY 55%), THE BAS WILL START CONDENSING UNIT #1 AND STAGE THE COMPRESSORS TO MAINTAIN THE DEHUMIDIFICATION

AHU-6 FREEZE PROTECTION: IF REHEAT COIL DISCHARGE AIR TEMPERATURE FALLS TO THE FREEZESTAT SETPOINT (INITIALLY 35 Deg.F.), AHU-6 THE SUPPLY FAN WILL BE STOPPED AND AN ALARM WILL BE SENT TO THE BAS. THIS FUNCTION WILL BE AUTOMATICALLY RESET.

AHU-6 LIFE SAFETY: A SMOKE DETECTOR LOCATED IN THE RETURN AIR DUCT WILL, UPON DETECTION OF PRODUCTS OF COMBUSTION, SIGNAL THE BUILDING FIRE ALARM SYSTEM (WHICH WILL SUBSEQUENTLY SHUT DOWN THE FANS). THIS FUNCTION MUST BE MANUALLY

RESET FROM THE AHU AND WILL BE SO IDENTIFIED ON THE HEAD END GRAPHICS. AN ALARM WILL ALSO BE PROVIDED TO THE BAS HEAD END.

AHU-6 SYSTEM SAFETY: WHEN EVER THE FAN IS STOPPED OR AIR FLOW CEASES FOR ANY REASON (AS SENSED BY THE MOTOR STATUS SENSING CIRCUIT), POWER TO THE REHEAT COIL HOT WATER CONTROL VALVE WILL BE REMOVED AND THE VALVE WILL POSITION OPEN. THE OUTDOOR AIR DAMPER WILL BE POSITIONED CLOSED. THE MOTOR STATUS SENSING CIRCUIT IS DESCRIBED SPECIFICATION SECTION 15975. IN ALL MODES OF OPERATION, COMMANDED POSITION VALUES FOR ALL CONTROL DEVICES (CONDENSING

AHU-6 VB BOX CONTROL:

COOLING:

ON A RISE IN SPACE TEMPERATURE AS SENSED BY THE BAS, THE VARIABLE AIR VOLUME TERMINAL DISTRIBUTION BOX (VB) WILL MODULATE FROM ITS MINIMUM POSITION TO ITS MAXIMUM POSITION AS NEEDED TO MAINTAIN SETPOINT AS FOLLOWS: OCCUPIED (INITIALLY 75 Deg.F.) THE VB WILL BE AT MINIMUM POSITION AT 75 Deg.F. AND FULL OPEN AT 77 Deg.F. THE HEATING COIL CONTROL VALVE WILL BE CLOSED. UNOCCUPIED (INITIALLY 85 Deg.F.) THE VB WILL BE AT MINIMUM POSITION AT 85 Deg.F. AND FULL OPEN AT 87 Deg.F. THE HEATING VALVE WILL BE CLOSED.

HEATING:

HOT WATER COIL CONTROL: ON A FALL IN SPACE TEMPERATURE AS SENSED BY THE BAS, THE VB WILL MODULATE TO ITS MINIMUM POSITION, AND THE HEATING COIL CONTROL VALVE WILL MODULATE OPEN AS REQUIRED TO MAINTAIN SETPOINT AS

OCCUPIED (INITIALLY 70 Deg.F.) THE VALVE WILL BE CLOSED AT 77 Deg.F. AND FULL OPEN AT 68 Deg.F.

UNOCCUPIÈD (INITIALLY 55 Deg.F.) THE VALVE WILL BE CLOSED AT 55 Deg.F AND FULL OPEN AT 53 Deg.F.

UNITS, DAMPERS, VALVES, ETC.) WILL BE READABLE FROM THE HEAD END.

FAN CONTROL: OCCUPIED: THE FAN WILL RUN CONTINUOUSLY.

UNOCCUPIED: FAN WILL CYCLE TO MAINTAIN SPACE TEMPERATURE.

EMERGENCY PROCEDURES:

ON A LOSS OF NETWORK COMMUNICATION MZ14 AND MZ21 WILL DEFAULT TO THE UNOCCUPIED MODE(USER SELECTABLE BETWEEN OCCUPIED OR UNOCCUPIED MODE) AND OPERATE AS A STAND ALONE UNIT.

LOSS OF NETWORK COMMUNICATION:

UPON RESTORATION OF POWER THE GLOBAL CONTROL MODULE(GCM) WILL POLL INDIVIDUAL CONTROLLERS TO VERIFY COMMUNICATION. IF THE CONTROLLER IS ON-LINE AND COMMUNICATING THEN THE GCM WILL UPDATE EACH CONTROLLER AND RESUME NORMAL OPERATION. CONTROLLERS WHICH DO NOT COMMUNICATE WITH THE GCM WILL BE NOTED AS BEING OFF-LINE.

GENERAL DEMOLITION NOTES: (THIS SHEET ONLY)

- 1. EXISTING POINTS LIST, DIAGRAMS, AND SEQUENCES OF OPERATION FROM 2016 CHESAPEAKE CONTROLS, INC. INSTALLATION.
- 2. EXISTING CONTROLS INFORMATION PROVIDED ON THIS SHEET TO BE USED FOR NEW CONTROLLERS INSTALLED ON ALL EXISTING TO REMAIN EQUIPMENT NOT MODIFIED DURING THIS PROJECT.

EMEN

Ш

HVAC CHOOLS

CHO(

S(VS)

GE MIDDLE NEWPORT NE

S

 \triangleleft

MA

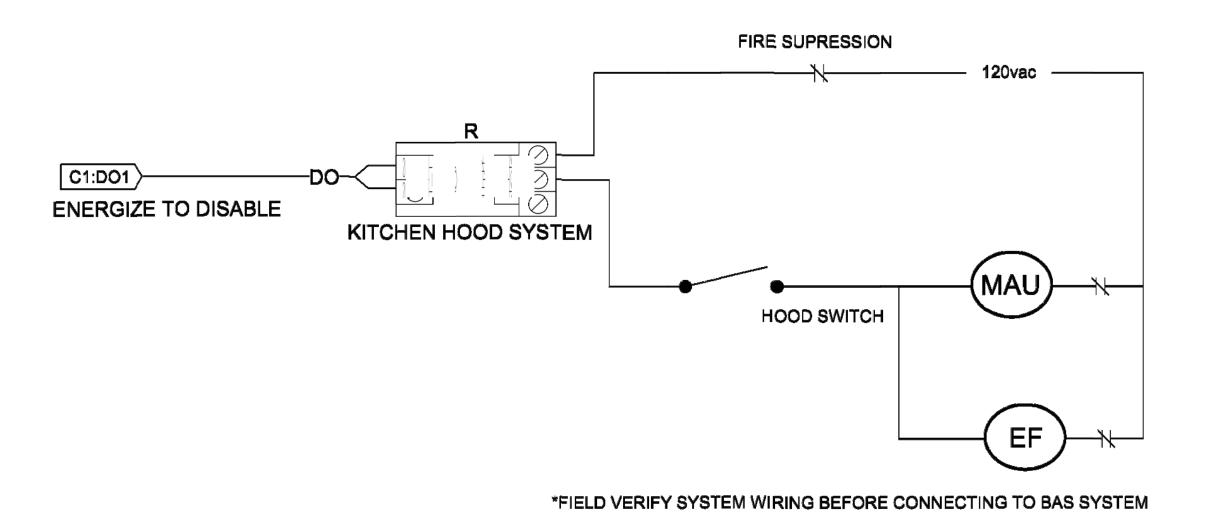
DESIGNED BY: CHECKED BY:

- 1. EXISTING POINTS LIST, DIAGRAMS, AND SEQUENCES OF OPERATION FROM 2016 CHESAPEAKE CONTROLS, INC.
- 2. EXISTING CONTROLS INFORMATION PROVIDED ON THIS DURING THIS PROJECT.

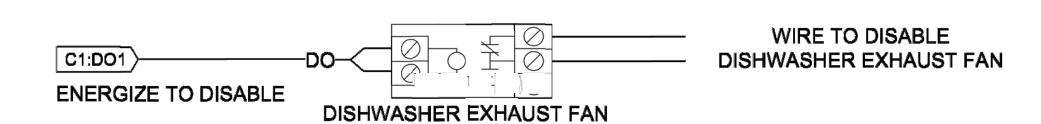
PART NUMBER QTY

RIB24P30

SCE-12N1204LP

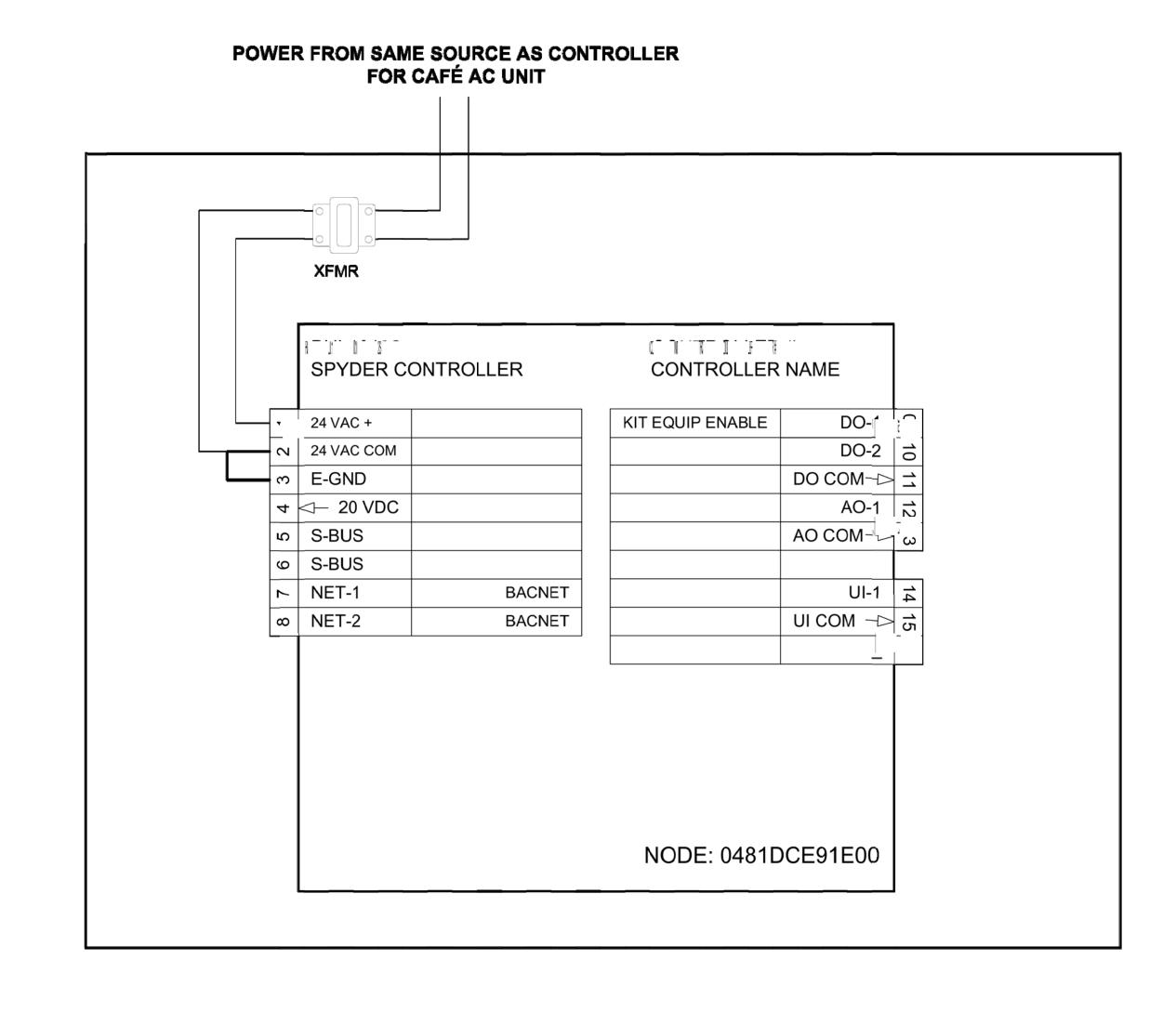

SCE-12N12MP

TR50VA004



CHECKED BY:

KITCHEN EQUIPMENT DIAGRAM



KITCHEN HOOD SYSTEM

*FIELD VERIFY SYSTEM WIRING BEFORE CONNECTING TO BAS SYSTEM

DISHWASHER EXHAUST FAN

KITCHEN HOOD & EXHAUST SYSTEM

KITCHEN HOOD AND EXHAUST SYSTEMS WILL BE ENABLED BASED ON A TIME OF DAY SCHEDULE AND BASED ON CALENDAR EVENTS. SCHEDULE DETERMINED BY OWNER

BILL OF MATERIAL KITCHEN EQUIPMENT

MANUFACTURER

FUNCTIONAL DEVICES

SAGINAW

SAGINAW

FUNCTIONAL DEVICES

DESCRIPTION

RELAY

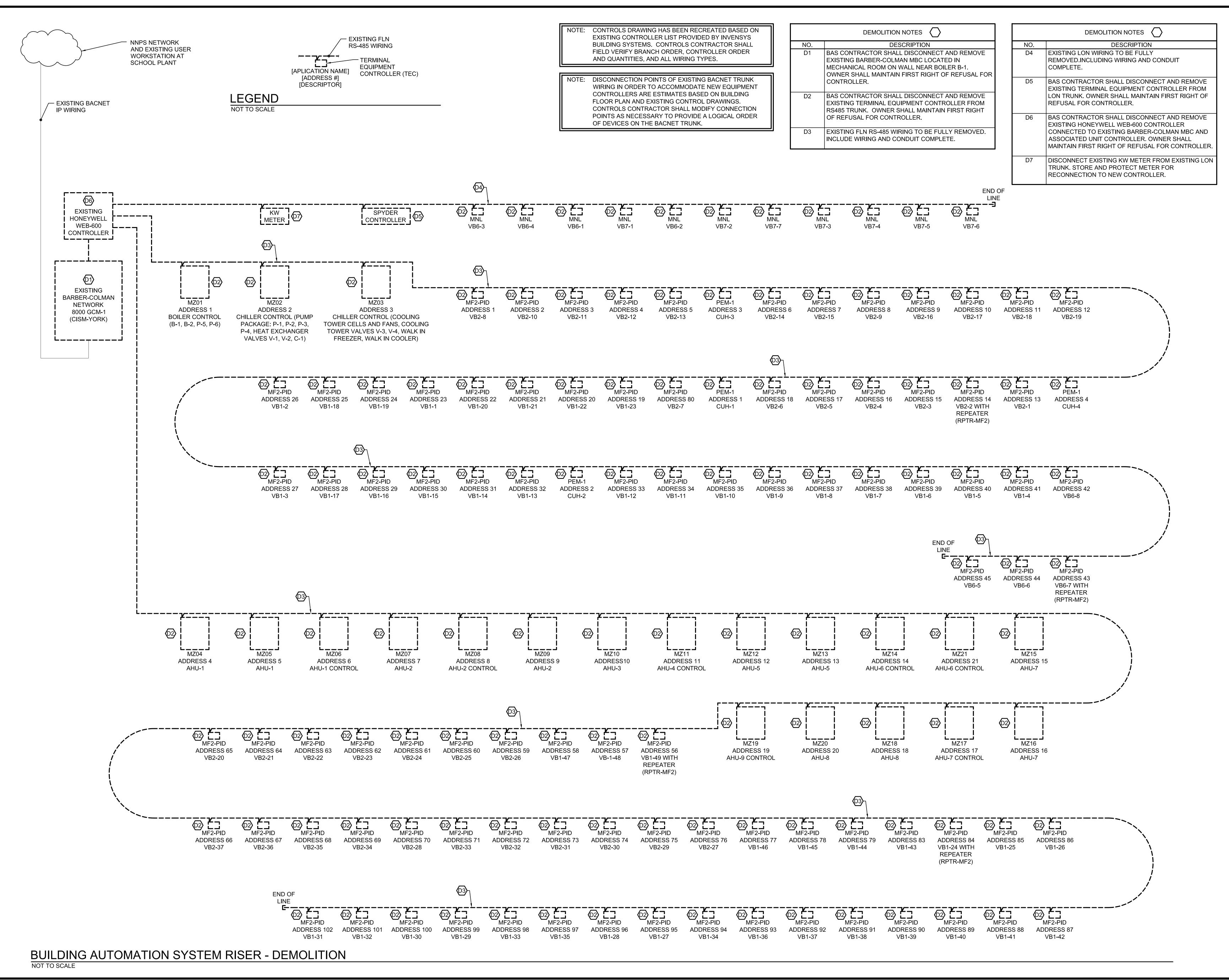
ENCLOSURE

BACK PANEL

480/277/240/208/120/24VACTRANSFORMER

LONCONTROLLER

TAG


© COPYRIGHT THOMPSON CONSULTING ENGINEERS

PASSAGE MIDDLE SCHOOL HVAC REPLACEMEN

NEWPORT NEWS PUBLIC SCHOOLS

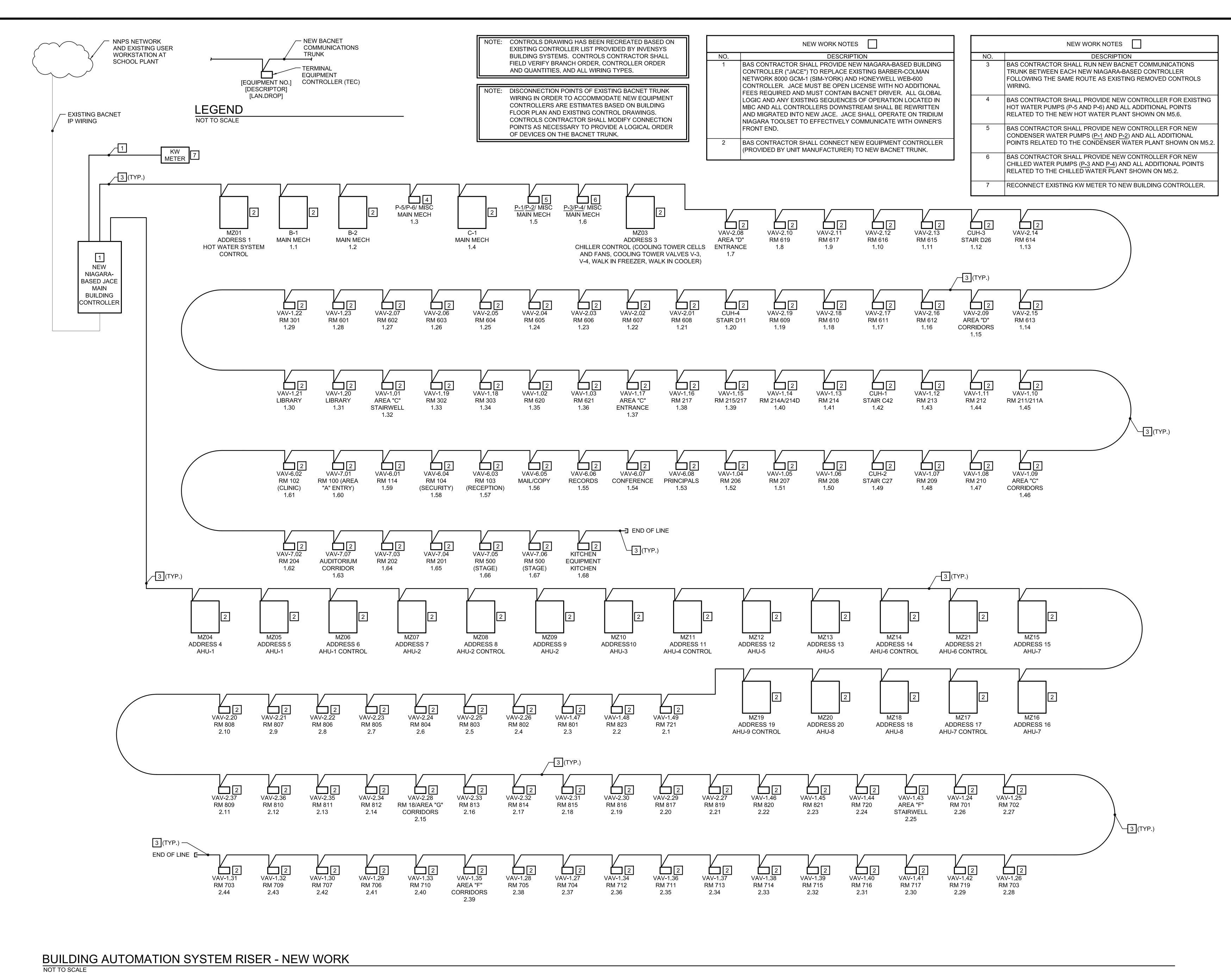
MARY L

DESIGNED BY:

ngineer

Itin

ACEMEN


S S S MS

SAGE MIDDLE NEWPORT NEW

DESIGNED BY: CHECKED BY:

M6.

01/26/2024

SON Ingineer

ltin

PASSAGE MIDDLE SCHOOL HVAC REPLACEMEN
NEWPORT NEWS PUBLIC SCHOOLS

MARY

COMM NO DESIGNED BY: DRAWN BY: CHECKED BY:

M6.2

DATE: 01/26/2024

ELECTRICAL LEGEND

POWER:

T	EXISTING DRY TYPE TRANSFORMER.
(E)	ELECTRICAL CONNECTION TO EQUIPMENT.
EF	ELECTRICAL CONNECTION TO EXHAUST FAN.
(JUNCTION BOX, SIZE AS REQUIRED.
_	PANELBOARD, 480Y/277 VOLT.
777	PANELBOARD, 208Y/120 VOLT.
WP,GFI	EXISTING DUPLEX RECEPTACLE, 20A, 120V. "GFI" WHEN USED INDICATES TAMPER PROOF GROUND FAULT CIRCUIT INTERRUPTER. "WP" WHEN USED INDICATES TAMPER PROOF WEATHER RESISTANT RECEPTACLE WITH WEATHERPROOF WHILE IN USE ENCLOSURE.
$\mathbf{\Phi}_{\mathrm{c}}$	EXISTING CEILING MOUNTED DUPLEX RECEPTACLE.
	CONDUIT RUN CONCEALED ABOVE CEILING.
—— ► H1A-15	HOMERUNS TO PANEL. PANEL & CIRCUIT DESIGNATIONS AS INDICATED.
	BRANCH CIRCUIT OR FEEDER WIRING IN CONDUIT. NO TICK MARKS INDICATES 2 #12 CONDUCTORS & 1 #12 GND IN 1/2" CONDUIT U.O.N. TICK MARKS, WHEN SHOWN, INDICATE NUMBER OF CONDUCTORS IF OTHER THAN THREE: (7) INDICATES GROUNDING CONDUCTOR. SEE NOTES ON DRAWINGS FOR CONDUCTOR SIZES LARGER THAN #12.
□ 3P $\frac{60}{40}$ 3R	DISCONNECT SWITCH, $600V$, U.O.N.: $3P = NUMBER OF POLES$, $60 = SWITCH RATING$, $40 = FUSE RATING$. $3R = NEMA 3R ENCLOSURE$.
B	EXISTING EMERGENCY BOILER AND WATER HEATER STOP STATION.
VFD	VARIABLE FREQUENCY DRIVE.

EXISTING WALL/CEILING MOUNTED TELEVISION,

FIRE ALARM SYSTEMS:

E1.1

FACP	EXISTING FIRE ALARM CONTROL PANEL.	
(S)	EXISTING FIRE ALARM SYSTEM SMOKE DETECTOR.	

MOTOR RATED SNAP SWITCH, SINGLE POLE, 20A, 120V.

TELECOMMUNICATIONS SYSTEMS:

PLAN CALLOUT INDICATOR.

S	EXISTING INTERCOM SYSTEM SPEAKER.
WA	EXISTING WIRELESS ACCESS POINT DEVICE.
SB	EXISTING SMART BOARD.

EXISTING IDF / MDF RACK.

SECU	RITY SYSTEMS:
©	EXISTING CEILING MOUNTED CCTV CAMERA.
MD	EXISTING CEILING MOUNTED MOTION DETECTOR.

THE CONTRACTOR SHALL INCLUDE IN HIS/HER BID THE HIRING OF THE "SEAM GROUP" TO PROVIDE SHORT CIRCUIT, COORDINATION STUDY, AND ARC FLASH HAZARD ANALYSIS. THE CONTRACTOR SHALL CONTACT JUSTIN SANDERS jsanders@seamgroup.com (1-765-418-7112) AT THE "SEAM GROUP" PRIOR TO PROCURING A CONTRACT FOR THIS PROJECT. THE SHORT CIRCUIT, COORDINATION STUDY, AND ARC FLASH HAZARD ANALYSIS SHALL BE PROVIDED FOR ALL NEW POWER DISTRIBUTION EQUIPMENT, ALL HVAC EQUIPMENT, AND ALL EXISTING POWER DISTRIBUTION EQUIPMENT AFFECTED BY THE SCOPE OF THIS CONTRACT. THE ARC FLASH EQUIPMENT LABELS SHALL BE FURNISHED BY THE SEAM GROUP, INSTALLED ON THE EQUIPMENT BY THE CONTRACTOR. THE CONTRACTOR SHALL COORDINATE WITH THE SEAM GROUP AND PROVIDE THE REQUIRED DATA (POWER EQUIPMENT SHOP DRAWINGS, FEEDERS INFORMATION [TYPE, LENGTH, AND SIZES] TO THE SEAM GROUP TO PERFORM THE STUDY AND ARC FLASH ANALYSIS. THE CONTRACTOR SHALL SUBMIT THE STUDY AND ANALYSIS ALONG WITH THE SHOP DRAWINGS TO THE ENGINEER FOR REVIEW. THE CONTRACTOR SHALL SUBMIT A HARD COPY OF THE FINAL STUDY TO THE OWNER.

GENERAL FIRE ALARM NOTES:

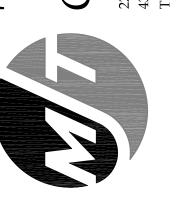
- ALL FIRE ALARM WORK, NEW, REMOVAL, AND REINSTALLATION OF EXISTING (WIRING DEVICES AND CONNECTING DEVICES) SHALL BE PERFORMED BY CERTIFIED BOSCH / RADIONICS INSTALLER. DOCUMENTATION OF CERTIFICATION BY COMPANY AND INSTALLER SHALL BE PROVIDED.
- 2. NNPS TECHNOLOGY STAFF WILL PROVIDE ADDRESSING AND VERBAL GUIDANCE ON THE ALARM CONNECTIVITY. IF QUESTIONS COME UP DURING THE PROJECT CONTACT NNPS TECHNOLOGY.
- 3. NNPS TECHNOLOGY STAFF WILL PROVIDE THE FIRE ALARM PANEL PROGRAMMING.
- 4. PRIOR TO THE PROJECT STARTING GENERAL CONTRACTOR FOREMAN AND ASSISTANT FOREMAN NAMES AND TELEPHONE NUMBERS SHOULD BE PROVIDED TO NNPS TECHNOLOGY SO THAT ALARM CODES CAN BE CREATED AND THE ABILITY OF PLACING THE ALARM SYSTEMS ON TEST
- 5. PRIOR TO ANY DISTURBANCE OF THE ALARM SYSTEMS THE SYSTEM(S) SHOULD BE PLACED ON TEST WITH OUR ALARM MONITORING CENTER
- 6. NO T-TAPPING SHALL BE USED ON THE FIRE ALARM SYSTEM. CONTRACTOR SHALL REQUEST AS-BUILTS FROM OWNER FOR CURRENT CIRCUITRY.
- 7. IF ANY MODIFICATIONS OR DEVICE REMOVAL/REINSTALLATIONS ARE NEEDED A CITY PERMIT MUST BE PULLED FOR THE FIRE ALARM SYSTEM.
- 8. PROVIDE FIRE ALARM DEVICES, CABLING AND ACCESSORIES THAT ARE COMPATIBLE WITH THE EXISTING RADIONICS FIRE ALARM PANEL. ALL NEW FIRE ALARM CABLING SHALL BE RED IN COLOR AND PLENUM RATED. PROVIDE PLENUM RATED TIE WRAPS TO SUPPORT CABLES ABOVE CEILING.

ABBREVIATIONS

A	AMP
AHU	AIR HANDLING UNIT
AV	AUDIO / VISUAL
В	BOILER
С	CHILLER
CCTV	CLOSED CIRCUIT TELEVISION
CIRC. OR CKT.	CIRCUIT
CUH	CABINET UNIT HEATER
DF	DRAFT INDUCTION FAN
EF	EXHAUST FAN
ELEC.	ELECTRICAL
FACP	FIRE ALARM CONTROL PANEL
GFI	GROUND FAULT INTERRUPTER
GND	GROUND
IDF	INTERMEDIATE DISTRIBUTION FRAME
KAIC	KILO-AMPERE INTERRUPTING CAPACITY
KEF	KITCHEN EXHAUST FAN
KMAU	KITCHEN MAKE-UP AIR UNIT
MCB	MAIN CIRCUIT BREAKER
MCC	MOTOR CONTROL CENTER
MDF	MAIN DISTRIBUTION FRAME
MECH.	MECHANICAL
MLO	MAIN LUGS ONLY
MDS	MAIN DISTRIBUTION SWITCHBOARD
MTD.	MOUNTED
NEMA	NATIONAL ELECTRICAL MANUFACTURER'S ASSOCIATION
NO.	NUMBER
NNPS	NEWPORT NEWS PUBLIC SHCOOLS
Р	POLE OR PUMP
SPD	SURGE PROTECTIVE DEVICE
UL	UNDERWRITER'S LABORATORIES
U.O.N.	UNLESS OTHERWISE NOTED
V	VOLT
VAV	VARIABLE AIR VOLUME
VB	VARIABLE AIR VOLUME BOX
VFD	VARIABLE FREQUENCY DRIVE
W	WIRE
XFMR	TRANSFORMER
Υ	WYE

GENERAL DEMOLITION NOTES:

- DISCONNECT AND REMOVE ALL ELECTRICAL MATERIAL, EQUIPMENT AND ELECTRICAL CONNECTIONS TO HVAC UNITS SHOWN ON ELECTRICAL DEMOLITION DRAWINGS, U.O.N.
- 2. PROVIDE ALL ELECTRICAL DEMOLITION WORK NECESSARY TO INSTALL NEW WORK.
 CONTRACTOR SHALL REROUTE AND RECONNECT ANY CIRCUIT THAT WILL REMAIN IN USE
 BUT INTERFERES WITH NEW CONSTRUCTION.
- 3. MAINTAIN CONTINUITY OF ALL EXISTING CIRCUITS TO REMAIN OR PORTIONS THEREOF AFFECTED BY NEW WORK.
- 4. EXISTING CONDITIONS ILLUSTRATED HAVE BEEN DETERMINED FROM ORIGINAL CONSTRUCTION DOCUMENTS AND LIMITED NON-INVASIVE FIELD INVESTIGATION. THE CONTRACTOR SHALL INVESTIGATE FIELD CONDITIONS PRIOR TO COMMENCEMENT OF WORK, COORDINATE AND MAKE ADJUSTMENTS AS NECESSARY.
- 5. ANY POWER OUTAGE THAT WILL AFFECT THE MAIN DISTRIBUTION SWITCHBOARD (MDS) AND POWER TO THE WHOLE BUILDING SHALL BE COORDINATED IN ADVANCE WITH NNPS PLANT SERVICES/ELECTRIC SHOP. A 48 HOUR NOTICE SHALL BE PROVIDED.
- 6. BEFORE BEGINNING ANY WORK, FIELD VERIFY THE WORKING CONDITION OF ALL AUXILIARY SYSTEM EQUIPMENT/DEVICES (WIRELESS ACCESS POINTS, PROJECTORS, SMOKE DETECTORS, MOTION DETECTORS, FIRE ALARM NOTIFICATION DEVICES, PHONES, PRINTERS, COMPUTERS, MONITORS, KEYBOARDS, ETC.) SCHEDULED FOR REMOVAL. SCHEDULE WITH WILLIAM CHAMBERS WITH NNPS FOR TESTING AND WALK-THROUGH. NOTIFY THE OWNER OF ANY DEFECTIVE EQUIPMENT. AFTER REINSTALLATION OF AUXILIARY SYSTEMS EQUIPMENT/DEVICES SAVED DURING DEMOLITION IS COMPLETE, RE-VERIFY THE WORKING CONDITION OF EACH. REPLACE ALL EQUIPMENT/DEVICES FOUND DEFECTIVE AFTER REINSTALLATION WHICH WAS WORKING PRIOR TO REMOVAL WITH NEW EQUIPMENT/DEVICES TO MATCH EXISTING AT NO ADDITIONAL COST TO THE OWNER. CONTRACTOR SHALL REQUIRE A WALK THROUGH WITH NNPS TECH STAFF TO ENSURE A FULL WORKING SYSTEM PRIOR TO REMOVAL.
- 7. DURING REMOVAL OF THE EXISTING LAY-IN CEILING PANELS, SUPPORT ALL EXISTING AUXILIARY SYSTEMS CABLES (DATA, TELEPHONE, CCTV, FIRE ALARM, MOTION DETECTORS, CATV, ETC.) ORIGINATING FROM MDF OR IDF EQUIPMENT FROM EXISTING STRUCTURE ABOVE EXISTING CEILING. ADJUST ROUTING OF THESE CABLE TO ACCOMMODATE THE INSTALLATION OF NEW HVAC SYSTEM EQUIPMENT AND DUCTWORK. RE-VERIFY THE WORKING CONDITION OF THESE CABLES AND REPLACE ALL CABLES FOUND DEFECTIVE AFTER REINSTALLATION, WHICH WERE WORKING PRIOR TO REMOVAL WITH CABLES TO MATCH EXISTING AT NO ADDITIONAL COST TO OWNER.
- 8. CONTRACTOR SHALL BE RESPONSIBLE FOR MOVING, REROUTING OR SECURING ALL AUXILIARY SYSTEMS CABLES DURING CONSTRUCTION IF ANY CEILINGS ARE TO BE REMOVED. IF ANY WIRING HAS TO BE DISCONNECTED TO BE REROUTED, THE CONTRACTOR SHALL COORDINATE WITH NNPS.
- 9. PRIOR TO THE START OF CONSTRUCTION, THE ELECTRICAL SUB-CONTRACTOR SHALL VERIFY THE OPERATION OF ALL OCCUPANCY SENSORS SHOWN TO BE REMOVED AND REINSTALLED. NOTIFY THE ENGINEER IF ANY OCCUPANCY SENSORS ARE NOT IN PROPER WORKING CONDITION.
- 10. ALL AUXILIARY DEVICES SHALL BE BASED AND SUSPENDED ABOVE CEILING PRIOR TO CEILING REMOVAL ANY DEVICES NOT EFFECTED BY CONSTRUCTION SHALL BE PROTECTED FROM DUST AND DEBRIS.


GENERAL NEW WORK NOTES:

- 1. WHERE INDIVIDUAL 120V HOMERUN CIRCUITS ARE SHOWN ON THE DRAWINGS, THEY MAY BE COMBINED AS FOLLOWS:
- NO MORE THAN THREE (3) PHASE CONDUCTORS PLUS THREE NEUTRALS AND ONE
 (1) GROUND PER CONDUIT, EXCEPT WHERE SPECIFICALLY NOTED OTHERWISE.
 NO TWO OF THE SAME PHASE CONDUCTOR PER CONDUIT.
 PROVIDE 120V CIRCUIT WITH INDIVIDUAL NEUTRALS PER CIRCUIT. NEUTRALS MAY
- PROVIDE 120V CIRCUIT WITH INDIVIDUAL NEUTRALS PER CIRCUIT. NEUTRALS MAY NOT BE SHARED BETWEEN PHASES.
- COORDINATE WITH MECHANICAL DRAWINGS FOR EXACT LOCATION OF EQUIPMENT REQUIRING ELECTRICAL CONNECTIONS INCLUDING EXACT POINT OF ELECTRICAL CONNECTION. MAKE ADJUSTMENTS TO NEW AND EXISTING CONDUIT ROUTING, PLACEMENT OF DISCONNECTS AND STARTERS AS REQUIRED.
- 3. PROVIDE NEW TYPED PANEL INDEXES FOR ALL PANELS WHERE CHANGES BROUGHT ON BY THIS PROJECT OCCUR.
- 4. IN AREAS WHERE NO OTHER TRADES ARE INVOLVED, THE ELECTRICAL CONTRACTOR IS RESPONSIBLE FOR THE REMOVAL OF EXISTING CEILING TILES AS REQUIRED TO INSTALL NEW CIRCUITRY. REINSTALL EXISTING CEILING TILES AFTER COMPLETION OF WORK. REPLACE ALL CEILING TILES DAMAGED DURING THIS PROJECT WITH NEW TILES TO MATCH EXISTING TO THE SATISFACTION OF THE ARCHITECT AND OWNER.
- 5. EXERCISE CARE IN REMOVING MATERIAL AND EQUIPMENT DURING DEMOLITION. REPAIR ALL DAMAGE TO EXISTING SURFACES OR EXISTING EQUIPMENT TO REMAIN TO THE SATISFACTION OF THE ARCHITECT AND OWNER AT NO COST TO THE OWNER.
- 6. ALL MATERIAL REMOVED DURING DEMOLITION (AND NOT CALLED OUT TO BE REINSTALLED) SHALL BECOME THE PROPERTY OF THE CONTRACTOR AND SHALL BE REMOVED FROM THE JOB SITE, UNLESS OTHERWISE NOTED. THE OWNER RESERVES THE RIGHT TO SALVAGE ANY OR ALL EXISTING MATERIAL AND/OR EQUIPMENT NOT SCHEDULED TO BE REINSTALLED.
- 7. VERIFY ALL CIRCUITS SAVED DURING DEMOLITION AS TO WIRE SIZE AND POINT OF ORIGIN.
- 8. WHERE THE TERM "BRANCH CIRCUITRY" IS USED ON THESE DRAWINGS, IT IS TO BE CONSTRUED TO MEAN CONDUIT AND CONDUCTORS.
- 9. INSTALL DEVICES SHOWN ON DRAWINGS IN ACCORDANCE WITH MOUNTING HEIGHTS SHOWN IN THE ELECTRICAL LEGEND AND/OR THE PROJECT SPECIFICATIONS.
- 10. SEAL AROUND ALL EXISTING AND NEW CONDUIT PENETRATIONS THROUGH WALLS WITH FIRE RETARDANT SEALANT THAT MEETS OR EXCEEDS THE FIRE RATING OF THE WALL.ALL OTHER THRU WALL PENETRATIONS SHALL BE GROUTED OR SEALED WITH CAULK. ALL PENETRATIONS SHALL BE CORE DRILLED OR DRILLED WITH PROPER TOOLS. HAMMERS SHALL NOT BE USED TO CREATE PENETRATIONS IN WALLS. REPAIRS SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR.
- 11. ALL NEW AUXILIARY SYSTEMS (FIRE ALARM, INTERCOM, DATA, AND ACCESS CONTROL)
 CABLING INSTALLED ABOVE CEILING WITHOUT CONDUIT SHALL BE PLENUM RATED.
- 12. SPLICES, KINKS, TWISTS AND DEFECTS OF ANY NATURE WILL NOT BE ACCEPTED BY NNPS TECHNOLOGY STAFF AND THE CONTRACTOR MUST, AT ITS OWN EXPENSE, REPLACE ALL SECTION OF CABLE IDENTIFIED BY NNPS.
- 13. NNPS TECHNOLOGY STAFF SHOULD BE CONSULTED BY CONTRACTOR FOR CHANGES THAT WILL BE MADE AND FOR GUIDANCE.
- 14. HARD AND ELECTRONIC COPIES OF AS-BUILT DRAWINGS SHALL BE PROVIDED TO NNPS TECHNOLOGY STAFF THAT SHOWS CABLE PATH, ZONE NUMBER FOR ANY NEW DEVICES, LOCATION OF DEVICES, ETC.
- 15. PROVIDE BUSHINGS ON ALL CONDUITS AND RACEWAYS.
- 16. ALL AUXILIARY SYSTEMS CABLES INSTALLED ABOVE CEILINGS SHALL BE INSTALLED IN EXISTING PATHWAYS WHERE AVAILABLE. PROVIDE J-HOOKS 12" ON CENTER IN AREAS WHERE EXISTING PATHWAYS ARE NOT AVAILABLE.
- 17. ANY MODIFICATION TO THE INTERCOM SYSTEM SHALL BE PERFORMED BY A CERTIFIED BOGEN REPRESENTATIVE.

Bugineers
AAMPTON, VA 23666
GLEN ALLEN, VA 23060

CONSULTIN
2 ENTERPRISE PARKWAY
323 COX ROAD
ELEPHONE: (757) 599-4415

AINIP

Z

Ш

E

Н

OL IC S

CHO(

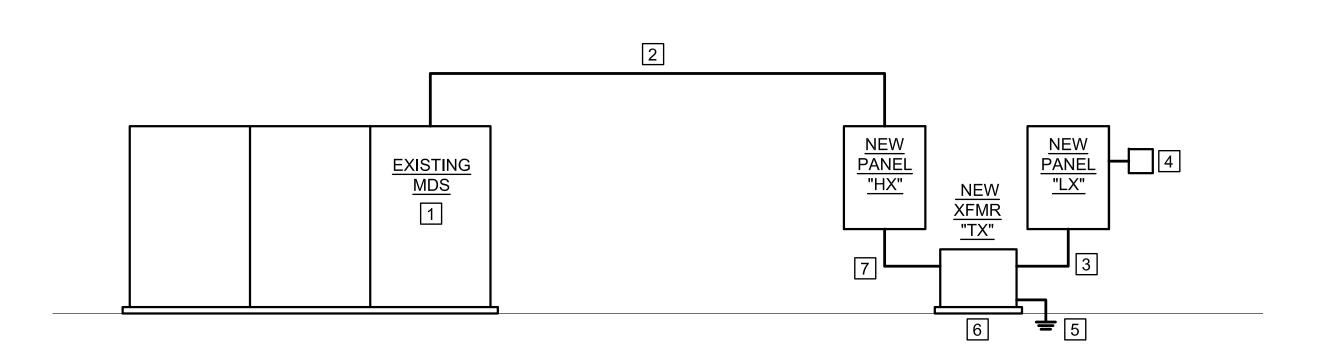
S(VS)

GE MIDDLE NEWPORT NE

S

 \triangleleft

MA


E0.1

COMM NO:

DESIGNED BY: DRAWN BY:

DATE: 01/26/2024

© COPYRIGHT THOMPSON CONSULTING ENGINEERS

PARTIAL POWER RISER DIAGRAM

NOT TO SCALE

POWER RISER DIAGRAM NOTES:

- 1 EXISTING 400A-3P CIRCUIT BREAKER WITH 250A RATING PLUG IN SPACE 12 IN EXISTING "MDS" TO REMAIN. REMOVE 250A RATING PLUG. PROVIDE NEW 400A RATING PLUG, PART NUMBER 'SRPG400A400', IN EXISTING 400A-3P CIRCUIT BREAKER. CONNECT BRANCH CIRCUITRY FROM NOTE 2 TO EXISTING CIRCUIT BREAKER.
- 2 PROVIDE 3-600KCMIL, 1-600KCMIL NEUTRAL AND 1 #3 GROUND IN 4" CONDUIT.
- 3 PROVIDE 3 #6 AND 1 #6 NEUTRAL AND 1 #8 GROUND IN 1-1/4" CONDUIT.
- 4 PROVIDE SPD IN ACCORDANCE WITH SPECIFICATION SECTION 264313. PROVIDE 4 #10 AND 1 #10 GROUND IN 1/2" CONDUIT. TERMINATE IN 30A-3P CIRCUIT BREAKER.
- 5 PROVIDE 1 #8 GROUNDING ELECTRODE CONDUCTOR. INSTALL IN ACCORDANCE WITH ARTICLE 250 OF THE N.E.C.
- 6 PROVIDE CONCRETE HOUSEKEEPING PAD IN ACCORDANCE WITH SPECIFICATION SECTION 262200.
- 7 PROVIDE 3 #10 AND 1 #10 GROUND IN 1/2" CONDUIT.

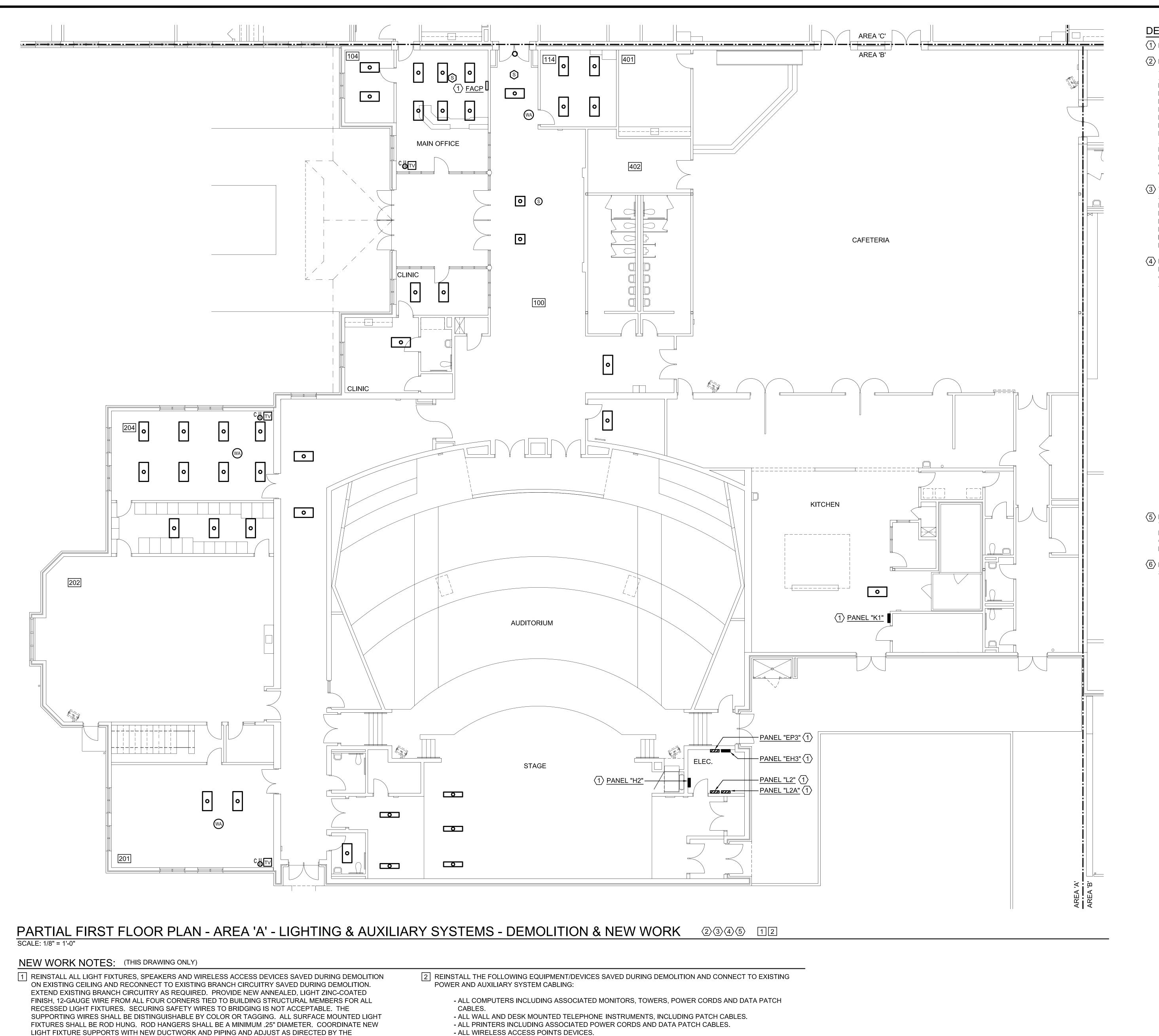
NEW PANEL	<u>"</u>	X"	40	1AC	ИP	48	301	1/2	27	7	٧,	39	ð, ·	4W	, \	1.L.	0.,	SU	RFACE MTD.
LOAD SERVED	LOA A	D (AN B	(IPS)	CKT.	BKR. TRIP	WIRE SIZE	CKT. No.	A	PHA B		C	CKT. No.	WIRE SIZE	CKT.	BKR. TRIP	LOA A	D (AM	MPS) C	LOAD SERVED
	52			10	90	3	1		П		-	2	3	10	90	52			
PUMP P-1		52					3					4					52		PUMP P-2
			52				5		Ш		\bot	6						52	
	52				90	3	7	_~_				8	3		90	52			
PUMP P-3		52					9				\bot	10					52		PUMP P-4
			52				11				\bot	12						52	
SPARE	_				20	_	13					14	_		20	_			SPARE
SPARE		_			20	_	15					16	_		20		_		SPARE
SPARE			_		20	_	17					18	_		20			_	SPARE
SPACE	_				_	_	19					20	_		_	_			SPACE
SPACE		_			_	_	21					22	_		_		_		SPACE
SPACE			_		_	_	23		\coprod			24	_		_			_	SPACE
SPACE	_			Ш	_	_	25		Ц	\bot		26	10		25	20			
SPACE		_		Ш	_	_	27				\bot	28					20		PANEL "LX" VIA XFMR "TX"
SPACE			_		_	_	29	L_{\sim}			\bot	30						20	

NEW PANE	L "l	_X"	60	AM	Р	20	8Y,	/1:	20)\	/ ,	3ø,	, 4	W,	М	.C.E	3., :	SUR	FACE MTD.	
LOAD SERVED	LOA A	D (AM B	(PS) C	CKT.	BKR. TRIP	WIRE SIZE	CKT. NO.	A	PHA E			CKT. NO.	WIRE SIZE	CKT.	BKR. TRIP	LOA A		(PS) C	LOAD SERVED	
BOILER B-1 (1)	4.5			10	20	12	1		П			2	12	10	20	4.5				
		4.5					3					4					4.5		BOILER B-2 (1)	
			4.5				5	$oxed{oldsymbol{oxed}}$			\bot	6						4.5		
							7					8	1		_	1				
EF-15		16			30	10	9					10	1		_		-		SPACE	
SPARE			_		20	-	11					12	ı		_			-	SPACE	
SPACE	-				_	-	13					14	ı		_	ı			SPACE	
SPACE		-			_	-	15					16	ı		_		-		SPACE	
SPACE			_		_	-	17					18	ı		_			-	SPACE	
SPACE	_				_	_	19				_ - 	20	10		30	1				
SPACE		_			_	-	21					22					1		SPD	
SPACE			_		_	_	23					24						1		

NOTE:

1. PROVIDE SHUNT TRIP TYPE CIRCUIT BREAKER.

TRANSFORMER SCHEDULE											
TRANSF. No.	KVA	PRIMARY	SECONDARY	ROOM NUMBER	APPROX. WT.	MOUNTING	REMARKS				
XFMR "TX"	15	480V	208Y/120	MECH. RM.	330 LBS.	FLOOR	K4 RATED				



MARY L PASSAGE MIDDLE SCHOOL HVAC REPLACEMEN NEWPORT NEWS PUBLIC SCHOOLS

DESIGNED BY: CHECKED BY:

© COPYRIGHT THOMPSON CONSULTING ENGINEERS

- ALL WIRELESS ACCESS POINTS DEVICES.

AND PROTECTED THROUGHOUT CONSTRUCTION.

AND DATA PATCH CABLES.

- ALL CEILING MOUNTED OR CART MOUNTED PROJECTORS INCLUDING ASSOCIATED MOUNTING

PLATES, CEILING MOUNTED RECEPTACLES, CEILING MOUNTED DATA OUTLETS, POWER CORDS

- ALL WALL MOUNTED SMARTBOARDS, MDF AND IDF DATA RACKS SHALL REMAIN IN PLACE, COVERED

DEMOLITION NOTES: (THIS DRAWING ONLY)

 $\langle 1 \rangle$ EXISTING TO REMAIN.

(2) DISCONNECT AND REMOVE ALL LIGHT FIXTURES, SPEAKERS AND WIRELESS ACCESS DEVICES SHOWN ON THIS DRAWING AS REQUIRED TO ACCOMMODATE THE REMOVAL AND REINSTALLATION OF MECHANICAL EQUIPMENT, AND SAVE FOR REUSE. LABEL EACH EQUIPMENT/DEVICE WITH REGARDS TO ROOM NUMBERS AND LOCATIONS TO ENSURE EACH EQUIPMENT/DEVICE IS INSTALLED IN THE SAME LOCATION FROM WHICH THEY WERE REMOVED. SAVE ASSOCIATED BRANCH CIRCUITRY FOR REUSE. RELOCATE AND EXTEND EXISTING BRANCH CIRCUITRY AS REQUIRED TO ACCOMMODATE THE REMOVAL AND INSTALLATION OF NEW MECHANICAL EQUIPMENT AND DUCTWORK. COORDINATE MECHANICAL WORK WITH THE MECHANICAL CONTRACTOR. COORDINATE FIRE ALARM AND SECURITY WORK WITH THE OWNER.

- (3) TEMPORARILY BAG AND SUPPORT ALL CEILING MOUNTED SMOKE DETECTORS SHOWN ON THIS DRAWING FROM EXISTING ROOF STRUCTURE TO ACCOMMODATE THE REMOVAL AND REINSTALLATION OF EXISTING CEILING. REINSTALL ALL EXISTING CEILING MOUNTED SMOKE DETECTORS SAVED DURING DEMOLITION IN EXISTING CEILING IN ORIGINAL LOCATIONS. IN AREAS THAT CEILINGS ARE NOT DISTURBED, PROVIDE DUST CAPS ON ALL DEVICES.
- 4 DISCONNECT, REMOVE AND SAVE FOR REINSTALLATION THE FOLLOWING EQUIPMENT/DEVICES IN ALL SPACES WHERE CEILINGS ARE REMOVED/REINSTALLED AND WITH HVAC SYSTEM DEMOLITION/NEW WORK:
 - ALL COMPUTERS INCLUDING ASSOCIATED MONITORS, TOWERS, POWER CORDS AND DATA PATCH CABLES. - ALL WALL AND DESK MOUNTED TELEPHONE INSTRUMENTS, INCLUDING PATCH CABLES.
 - ALL PRINTERS INCLUDING ASSOCIATED POWER CORDS AND DATA PATCH CABLES. - ALL WIRELESS ACCESS POINTS DEVICES.
 - ALL CEILING MOUNTED OR CART MOUNTED PROJECTORS INCLUDING ASSOCIATED MOUNTING PLATES, CEILING MOUNTED RECEPTACLES, CEILING MOUNTED DATA OUTLETS, POWER CORDS AND DATA PATCH CABLES.
 - ALL WALL MOUNTED SMARTBOARDS, MDF AND IDF DATA RACKS SHALL REMAIN IN PLACE, COVERED AND PROTECTED THROUGHOUT CONSTRUCTION.

LABEL ALL EQUIPMENT/DEVICES WITH REGARDS TO ROOM NUMBERS AND LOCATIONS TO ENSURE EACH ITEM IS REINSTALLED IN THE SAME LOCATION FROM WHICH THEY WERE REMOVED. ALL ITEMS SHALL BE SECURELY STORED IN A TEMPERATURE AND HUMIDITY CONTROLLED LOCATION AND AWAY FROM ALL CONSTRUCTION. COORDINATE THE IDENTIFICATION OF EACH ITEM WITH THE OWNER PRIOR TO REMOVAL AND PROVIDE DOCUMENTATION IDENTIFYING EACH ITEM TYPE AND QUANTITY.

- $\langle 5 \rangle$ DISCONNECT AND REMOVE FROM SITE, ALL WALL MOUNTED TELEVISIONS SHOWN ON THIS DRAWING, INCLUDING WALL MOUNTED TELEVISION BRACKETS, POWER AND AV PATCH CABLES. EXISTING POWER AND AV OUTLET BOXES TO
- (6) REFER TO CP DRAWINGS FOR CEILING BEING REMOVED AND SYSTEMS BEING EFFECTED.

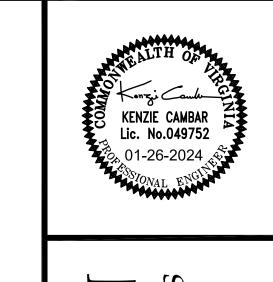
©

KEY PLAN

on zi Combe KENZIE CAMBAR Lic. No.049752 ್ರೈ 01-26-2024_.

Iti

S/MS SAGE MIDDLE NEWPORT NE MAR


> COMM NO. DESIGNED BY: DRAWN BY

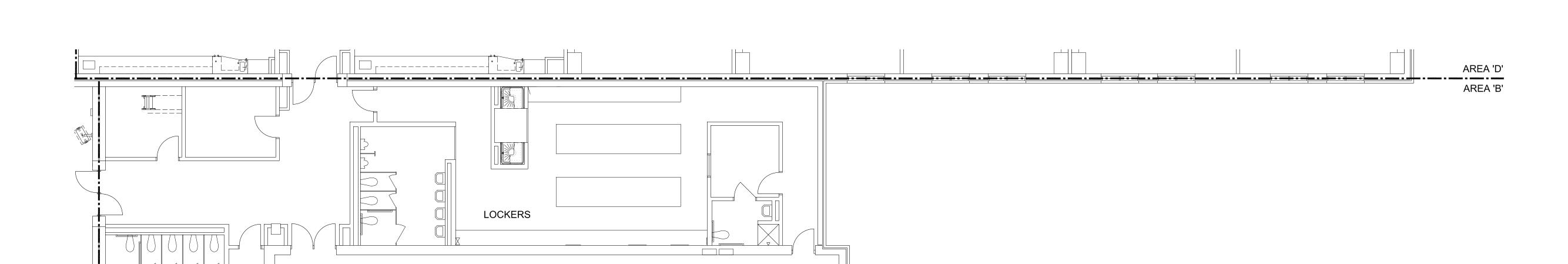
CAB CHECKED BY:

22-113

ED1. DATE: 01/26/2024

MECHANICAL CONTRACTOR.

ACEMEN


REPL/

PASSAGE MIDDLE SCHOOL HVAC

MARY

CHECKED BY:

ED1.2

GYMNASIUM

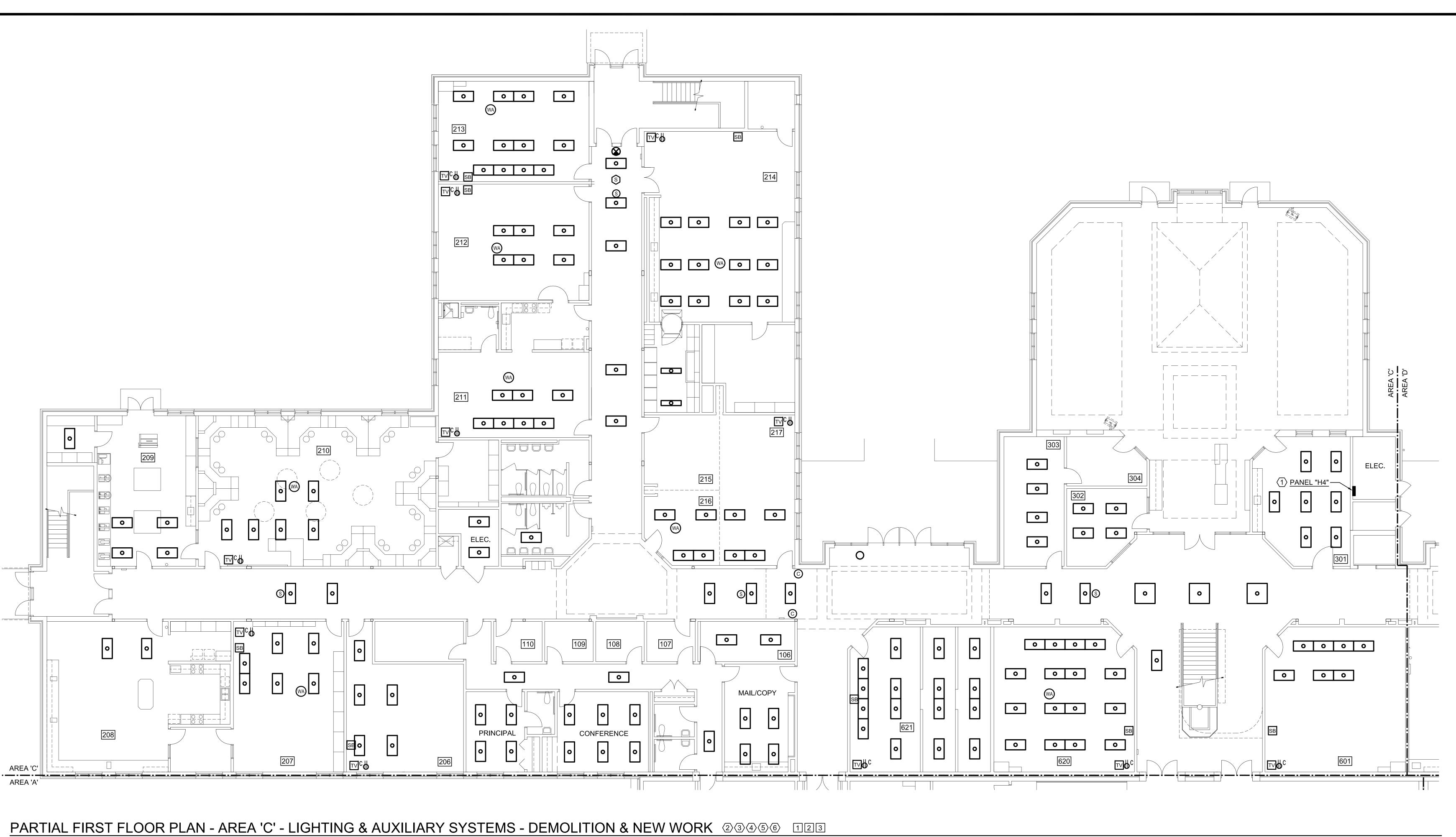
MECH RM o

(<u>)</u>

— <u>PANEL "H1"</u> (1) — PANEL "EH1" (1)

PARTIAL FIRST FLOOR PLAN - AREA 'B' - LIGHTING & AUXILIARY SYSTEMS - DEMOLITION & NEW WORK 2 1 SCALE: 1/8" = 1'-0"

DEMOLITION NOTES: (THIS DRAWING ONLY)


 \bigcirc EXISTING TO REMAIN.

(2) DISCONNECT AND REMOVE ALL PENDANT MOUNTED LIGHT FIXTURES SHOWN ON THIS DRAWING AS ENSURE EACH EQUIPMENT/DEVICE IS INSTALLED IN THE SAME LOCATION FROM WHICH THEY WERE REMOVED. SAVE ASSOCIATED BRANCH CIRCUITRY FOR REUSE. RELOCATE AND EXTEND EXISTING BRANCH CIRCUITRY AS REQUIRED TO ACCOMMODATE THE REMOVAL AND INSTALLATION OF NEW MECHANICAL EQUIPMENT AND DUCTWORK. COORDINATE MECHANICAL WORK WITH THE MECHANICAL

 $\langle 3 \rangle$ REFER TO CP DRAWINGS FOR CEILING BEING REMOVED AND SYSTEMS BEING EFFECTED.

NEW WORK NOTES: (THIS DRAWING ONLY)

1 REINSTALL ALL PENDANT MOUNTED LIGHT FIXTURES SAVED DURING DEMOLITION ON EXISTING CEILING AND RECONNECT TO EXISTING BRANCH CIRCUITRY SAVED DURING DEMOLITION. EXTEND EXISTING BRANCH CIRCUITRY AS REQUIRED. ALL SURFACE MOUNTED LIGHT FIXTURES SHALL BE ROD HUNG. ROD HANGERS SHALL BE A MINIMUM .25" DIAMETER. COORDINATE NEW LIGHT FIXTURE SUPPORTS WITH NEW DUCTWORK AND PIPING AND ADJUST AS DIRECTED BY THE MECHANICAL CONTRACTOR.

SCALE: 1/8" = 1'-0"

DEMOLITION NOTES: (THIS DRAWING ONLY)

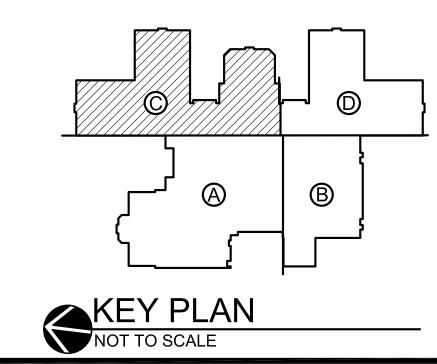
1 EXISTING TO REMAIN.

(2) DISCONNECT AND REMOVE ALL CEILING MOUNTED EXIT LIGHTS, LIGHT FIXTURES, SPEAKERS AND WIRELESS ACCESS DEVICES SHOWN ON THIS DRAWING AS REQUIRED TO ACCOMMODATE THE REMOVAL AND REINSTALLATION OF MECHANICAL EQUIPMENT, AND SAVE FOR REUSE. LABEL EACH EQUIPMENT/DEVICE WITH REGARDS TO ROOM NUMBERS AND LOCATIONS TO ENSURE EACH DUCTWORK. COORDINATE MECHANICAL WORK WITH THE MECHANICAL CONTRACTOR. COORDINATE FIRE ALARM AND SECURITY WORK WITH THE OWNER.

- (3) TEMPORARILY BAG AND SUPPORT ALL CEILING MOUNTED SMOKE DETECTORS SHOWN ON THIS DRAWING FROM EXISTING ROOF STRUCTURE TO ACCOMMODATE THE REMOVAL AND REINSTALLATION OF EXISTING EXISTING CEILING IN ORIGINAL LOCATIONS. IN AREAS THAT CEILINGS ARE NOT DISTURBED, PROVIDE DUST CAPS ON ALL DEVICES.
- 4 DISCONNECT AND REMOVE ALL CEILING MOUNTED CCTV CAMERAS SHOWN ON THIS DRAWING. AND SAVE FOR REUSE. SAVE ASSOCIATED CABLES FOR REUSE. THE CONTRACTOR SHALL PROVIDE THE FOLLOWING:
 - LABEL AND DOCUMENT EACH CCTV CAMERA LOCATION.

TECHNOLOGY STAFF TO REALIGN.

- ORIENTATION OF THE CAMERA NOTATED. - T-GRID HANGER BRACKET AND BOX WITH THE SCREWS SHALL BE KEPT AND BE REUSED AT TIME OF REINSTALLATION.
- CAMERAS SHOULD BE INSTALLED IN THE SAME AREA AND IN THE SAME ORIENTATION AS ORIGINAL. - CAMERA REINSTALLATION SHOULD TAKE INTO ACCOUNT ANY NEW OBSTRUCTIONS THAT IMPACT THE LOCATION AND/OR THE VIEWABLE AREA OF THE CAMERA SUCH AS LIGHTS AND EXIT SIGNS. - IF CAMERA LENS NEEDS TO BE ADJUSTED, THE CONTRACTOR SHALL WORK WITH NNPS


- (5) DISCONNECT, REMOVE AND SAVE FOR REINSTALLATION THE FOLLOWING EQUIPMENT/DEVICES IN ALL SPACES WHERE CEILINGS ARE REMOVED/REINSTALLED AND WITH HVAC SYSTEM DEMOLITION/NEW WORK:
 - ALL COMPUTERS INCLUDING ASSOCIATED MONITORS, TOWERS, POWER CORDS AND DATA PATCH
 - ALL WALL AND DESK MOUNTED TELEPHONE INSTRUMENTS, INCLUDING PATCH CABLES. - ALL PRINTERS INCLUDING ASSOCIATED POWER CORDS AND DATA PATCH CABLES.
 - ALL WIRELESS ACCESS POINTS DEVICES.
 - PLATES, CEILING MOUNTED RECEPTACLES, CEILING MOUNTED DATA OUTLETS. POWER CORDS
 - ALL WALL MOUNTED SMARTBOARDS, MDF AND IDF DATA RACKS SHALL REMAIN IN PLACE, COVERED AND PROTECTED THROUGHOUT CONSTRUCTION.

EACH ITEM IS REINSTALLED IN THE SAME LOCATION FROM WHICH THEY WERE REMOVED. ALL ITEMS SHALL BE SECURELY STORED IN A TEMPERATURE AND HUMIDITY CONTROLLED LOCATION AND AWAY FROM ALL CONSTRUCTION. COORDINATE THE IDENTIFICATION OF EACH ITEM WITH THE OWNER PRIOR TO REMOVAL AND PROVIDE DOCUMENTATION IDENTIFYING EACH ITEM TYPE AND QUANTITY.

- (6) DISCONNECT AND REMOVE FROM SITE, ALL WALL MOUNTED TELEVISIONS SHOWN ON THIS DRAWING, INCLUDING WALL MOUNTED TELEVISION BRACKETS, POWER AND AV PATCH CABLES. EXISTING POWER AND AV OUTLET BOXES TO REMAIN.
- $\langle 7 \rangle$ REFER TO CP DRAWINGS FOR CEILING BEING REMOVED AND SYSTEMS BEING EFFECTED.

NEW WORK NOTES: (THIS DRAWING ONLY)

- 1 REINSTALL ALL CEILING MOUNTED EXIT LIGHTS, LIGHT FIXTURES, SPEAKERS AND WIRELESS ACCESS DEVICES SAVED DURING DEMOLITION ON EXISTING CEILING AND RECONNECT TO EXISTING BRANCH NEW ANNEALED, LIGHT ZINC-COATED FINISH, 12-GAUGE WIRE FROM ALL FOUR CORNERS TIED TO BUILDING STRUCTURAL MEMBERS FOR ALL RECESSED LIGHT FIXTURES. SECURING SAFETY WIRES TO BRIDGING IS NOT ACCEPTABLE. THE SUPPORTING WIRES SHALL BE DISTINGUISHABLE BY COLOR OR TAGGING. COORDINATE NEW LIGHT FIXTURE SUPPORTS WITH NEW DUCTWORK AND PIPING AND ADJUST AS DIRECTED BY THE MECHANICAL CONTRACTOR
- 2 REINSTALL ALL CEILING MOUNTED CCTV CAMERAS SHOWN ON THIS DRAWING, SAVED DURING DEMOLITION AND CONNECT TO EXISTING CABLES. THE CONTRACTOR SHALL PROVIDE THE FOLLOWING:
 - INSTALL CCTV CAMERAS IN THE SAME LOCATION AND IN THE SAME ORIENTATION AS ORIGINAL - CAMERA REINSTALLATION SHOULD TAKE INTO ACCOUNT ANY NEW OBSTRUCTIONS THAT IMPACT THE LOCATION AND/OR THE VIEWABLE AREA OF THE CAMERA SUCH AS LIGHTS AND EXIT SIGNS. - IF CAMERA LENS NEEDS TO BE ADJUSTED, THE CONTRACTOR SHALL WORK WITH NNPS TECHNOLOGY STAFF TO REALIGN.
- 3 REINSTALL THE FOLLOWING EQUIPMENT/DEVICES SAVED DURING DEMOLITION AND CONNECT TO EXISTING POWER AND AUXILIARY SYSTEM CABLING:
 - ALL COMPUTERS INCLUDING ASSOCIATED MONITORS, TOWERS, POWER CORDS AND DATA PATCH
 - ALL WALL AND DESK MOUNTED TELEPHONE INSTRUMENTS, INCLUDING PATCH CABLES. - ALL PRINTERS INCLUDING ASSOCIATED POWER CORDS AND DATA PATCH CABLES. - ALL WIRELESS ACCESS POINTS DEVICES.
 - ALL CEILING MOUNTED OR CART MOUNTED PROJECTORS INCLUDING ASSOCIATED MOUNTING PLATES, CEILING MOUNTED RECEPTACLES, CEILING MOUNTED DATA OUTLETS, POWER CORDS AND DATA PATCH CABLES.
 - ALL WALL MOUNTED SMARTBOARDS, MDF AND IDF DATA RACKS SHALL REMAIN IN PLACE, COVERED AND PROTECTED THROUGHOUT CONSTRUCTION.

CAB CHECKED BY:

DATE:

© COPYRIGHT THOMPSON CONSULTING ENGINEERS

AGE MIDDLE SON NEWPORT NEWS

ACEMEN⁻

COMM NO. 22-113 **DESIGNED BY:** DRAWN BY:

ED1.3

PARTIAL FIRST FLOOR PLAN - AREA 'D' - LIGHTING & AUXILIARY SYSTEMS - DEMOLITION & NEW WORK

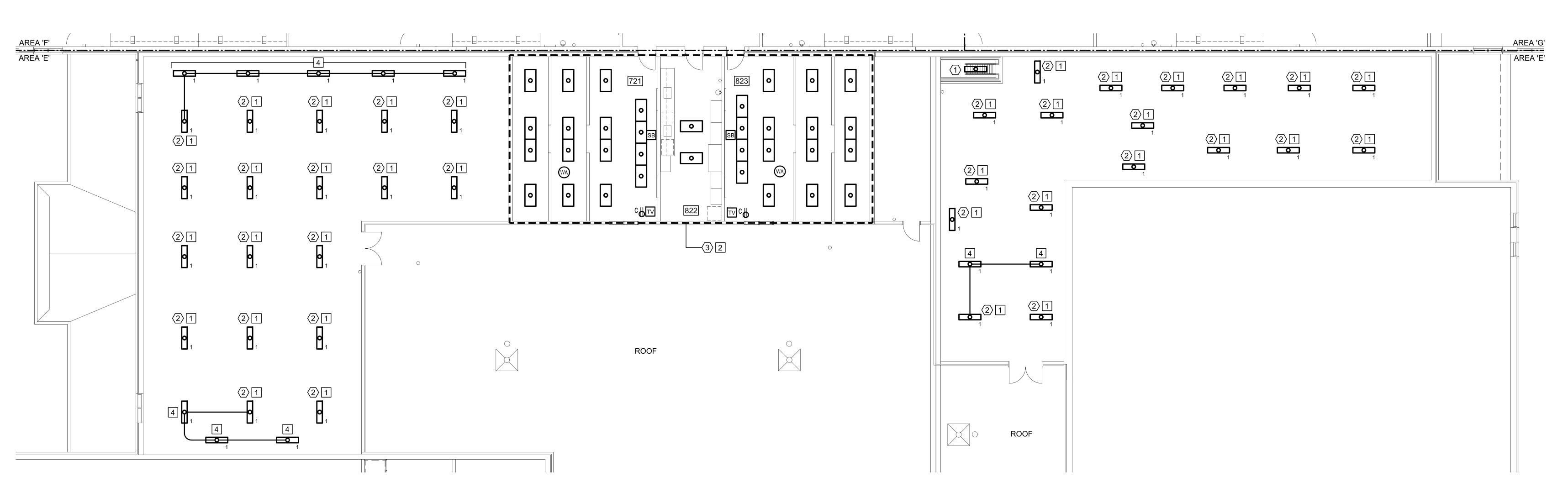
- 1 EXISTING TO REMAIN.
- DUCTWORK. COORDINATE MECHANICAL WORK WITH THE MECHANICAL CONTRACTOR. COORDINATE FIRE ALARM AND SECURITY WORK WITH THE OWNER.
- (3) DISCONNECT AND REMOVE ALL CEILING MOUNTED CCTV CAMERAS SHOWN ON THIS DRAWING. AND SAVE
 - LABEL AND DOCUMENT EACH CCTV CAMERA LOCATION. - ORIENTATION OF THE CAMERA NOTATED.
 - T-GRID HANGER BRACKET AND BOX WITH THE SCREWS SHALL BE KEPT AND BE REUSED AT TIME OF REINSTALLATION.
 - CAMERAS SHOULD BE INSTALLED IN THE SAME AREA AND IN THE SAME ORIENTATION AS ORIGINAL. - CAMERA REINSTALLATION SHOULD TAKE INTO ACCOUNT ANY NEW OBSTRUCTIONS THAT IMPACT THE LOCATION AND/OR THE VIEWABLE AREA OF THE CAMERA SUCH AS LIGHTS AND EXIT SIGNS. - IF CAMERA LENS NEEDS TO BE ADJUSTED, THE CONTRACTOR SHALL WORK WITH NNPS TECHNOLOGY STAFF TO REALIGN.

- ALL WALL AND DESK MOUNTED TELEPHONE INSTRUMENTS, INCLUDING PATCH CABLES.
- ALL WIRELESS ACCESS POINTS DEVICES.

- ALL WALL MOUNTED SMARTBOARDS, MDF AND IDF DATA RACKS SHALL REMAIN IN PLACE, COVERED AND PROTECTED THROUGHOUT CONSTRUCTION.
- EACH ITEM IS REINSTALLED IN THE SAME LOCATION FROM WHICH THEY WERE REMOVED. ALL ITEMS SHALL BE SECURELY STORED IN A TEMPERATURE AND HUMIDITY CONTROLLED LOCATION AND AWAY FROM ALL CONSTRUCTION. COORDINATE THE IDENTIFICATION OF EACH ITEM WITH THE OWNER PRIOR TO REMOVAL AND PROVIDE DOCUMENTATION IDENTIFYING EACH ITEM TYPE AND QUANTITY.
- (5) DISCONNECT AND REMOVE FROM SITE, ALL WALL MOUNTED TELEVISIONS SHOWN ON THIS DRAWING, INCLUDING WALL MOUNTED TELEVISION BRACKETS, POWER AND AV PATCH CABLES. EXISTING POWER AND AV OUTLET BOXES TO REMAIN.
- (6) REFER TO CP DRAWINGS FOR CEILING BEING REMOVED AND SYSTEMS BEING EFFECTED.

ACEMEN

SAGE MIDDLE SCHOOL
NEWPORT NEWS PUBLIC S


MAR

©

COMM NO. **DESIGNED BY:**

22-113

DRAWN BY: CHECKED BY:

PARTIAL SECOND FLOOR PLAN - AREA 'E' - LIGHTING & AUXILIARY SYSTEMS - DEMOLITION & NEW WORK 456 3 SCALE: 1/8" = 1'-0"

DEMOLITION NOTES: (THIS DRAWING ONLY)

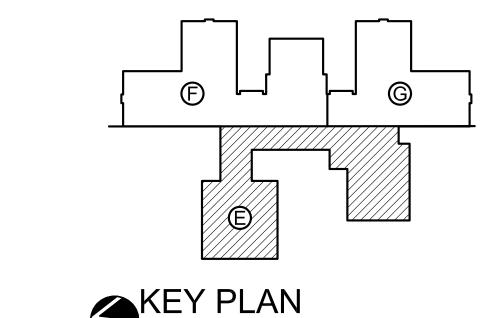
- 1 EXISTING TO REMAIN.
- (2) DISCONNECT AND REMOVE EXISTING LIGHT FIXTURE. SAVE BRANCH CIRCUITRY FOR REUSE.
- (3) DISCONNECT AND REMOVE ALL CEILING MOUNTED LIGHT FIXTURES AND WIRELESS ACCESS DEVICES SHOWN IN THIS AREA AS REQUIRED TO ACCOMMODATE THE REMOVAL AND REINSTALLATION OF MECHANICAL EQUIPMENT, AND SAVE FOR REUSE. LABEL EACH EQUIPMENT/DEVICE WITH REGARDS TO ROOM NUMBERS AND LOCATIONS TO ENSURE EACH EQUIPMENT/DEVICE IS INSTALLED IN THE SAME LOCATION FROM WHICH THEY WERE REMOVED. SAVE ASSOCIATED BRANCH CIRCUITRY FOR REUSE. RELOCATE AND EXTEND EXISTING BRANCH CIRCUITRY AS REQUIRED TO ACCOMMODATE THE REMOVAL AND REINSTALLATION OF MECHANICAL EQUIPMENT AND DUCTWORK. COORDINATE MECHANICAL WORK WITH THE MECHANICAL CONTRACTOR. COORDINATE FIRE ALARM AND SECURITY WORK WITH THE OWNER.
- 4 DISCONNECT, REMOVE AND SAVE FOR REINSTALLATION THE FOLLOWING EQUIPMENT/DEVICES IN ALL SPACES WHERE CEILINGS ARE REMOVED/REINSTALLED AND WITH HVAC SYSTEM DEMOLITION/NEW WORK:
 - ALL COMPUTERS INCLUDING ASSOCIATED MONITORS, TOWERS, POWER CORDS AND DATA PATCH
 - ALL WALL AND DESK MOUNTED TELEPHONE INSTRUMENTS, INCLUDING PATCH CABLES.
 - ALL PRINTERS INCLUDING ASSOCIATED POWER CORDS AND DATA PATCH CABLES. - ALL WIRELESS ACCESS POINTS DEVICES.
 - ALL CEILING MOUNTED OR CART MOUNTED PROJECTORS INCLUDING ASSOCIATED MOUNTING PLATES, CEILING MOUNTED RECEPTACLES, CEILING MOUNTED DATA OUTLETS, POWER CORDS
 - ALL WALL MOUNTED SMARTBOARDS, MDF AND IDF DATA RACKS SHALL REMAIN IN PLACE, COVERED
 - LABEL ALL EQUIPMENT/DEVICES WITH REGARDS TO ROOM NUMBERS AND LOCATIONS TO ENSURE EACH ITEM IS REINSTALLED IN THE SAME LOCATION FROM WHICH THEY WERE REMOVED. ALL ITEMS SHALL BE SECURELY STORED IN A TEMPERATURE AND HUMIDITY CONTROLLED LOCATION AND AWAY FROM ALL CONSTRUCTION. COORDINATE THE IDENTIFICATION OF EACH ITEM WITH THE OWNER PRIOR TO REMOVAL AND PROVIDE DOCUMENTATION IDENTIFYING EACH ITEM TYPE AND QUANTITY.
- (5) DISCONNECT AND REMOVE FROM SITE, ALL WALL MOUNTED TELEVISIONS SHOWN ON THIS DRAWING, INCLUDING WALL MOUNTED TELEVISION BRACKETS, POWER AND AV PATCH CABLES. EXISTING POWER AND AV OUTLET BOXES TO REMAIN.
- (6) REFER TO CP DRAWINGS FOR CEILING BEING REMOVED AND SYSTEMS BEING EFFECTED.

AND PROTECTED THROUGHOUT CONSTRUCTION.

NEW WORK NOTES: (THIS DRAWING ONLY)

- 1 INSTALL NEW LIGHT FIXTURE IN SAME LOCATION AND SAME MOUNTING HEIGHT AS LIGHT FIXTURE REMOVED DURING DEMOLITION AND CONNECT TO EXISTING BRANCH CIRCUITRY SAVED DURING DEMOLITION.
- 2 REINSTALL ALL LIGHT FIXTURES AND WIRELESS ACCESS DEVICES SHOWN IN THIS AREA, AND SAVED LIGHT ZINC-COATED FINISH, 12-GAUGE WIRE FROM ALL FOUR CORNERS TIED TO BUILDING STRUCTURAL MEMBERS FOR ALL RECESSED LIGHT FIXTURES. SECURING SAFETY WIRES TO BRIDGING IS NOT ACCEPTABLE. THE SUPPORTING WIRES SHALL BE DISTINGUISHABLE BY COLOR OR TAGGING. COORDINATE NEW LIGHT FIXTURE SUPPORTS WITH NEW DUCTWORK AND PIPING AND ADJUST AS DIRECTED BY THE MECHANICAL CONTRACTOR.
- 3 REINSTALL THE FOLLOWING EQUIPMENT/DEVICES SAVED DURING DEMOLITION AND CONNECT TO EXISTING POWER AND AUXILIARY SYSTEM CABLING:
 - ALL COMPUTERS INCLUDING ASSOCIATED MONITORS, TOWERS, POWER CORDS AND DATA PATCH
 - ALL WALL AND DESK MOUNTED TELEPHONE INSTRUMENTS, INCLUDING PATCH CABLES. - ALL PRINTERS INCLUDING ASSOCIATED POWER CORDS AND DATA PATCH CABLES.
 - ALL WIRELESS ACCESS POINTS DEVICES.
 - ALL CEILING MOUNTED OR CART MOUNTED PROJECTORS INCLUDING ASSOCIATED MOUNTING PLATES, CEILING MOUNTED RECEPTACLES, CEILING MOUNTED DATA OUTLETS, POWER CORDS AND DATA PATCH CABLES.
 - ALL WALL MOUNTED SMARTBOARDS, MDF AND IDF DATA RACKS SHALL REMAIN IN PLACE. COVERED AND PROTECTED THROUGHOUT CONSTRUCTION.
- 4 PROVIDE AND CONNECT NEW LIGHT FIXTURE TO EXISTING LIGHTING BRANCH CIRCUITRY AS INDICATED

	LIGHT FIXTURE	SCHE	EDULE			
TYPE	MANUFACTURER'S CATALOG No.	VOLT	LUMENS	WATTAGE	MOUNTING	REMARKS
1	DAY-BRITE FSI455L835-UNV	UNV	5400	40.3W	PENDANT	SEE NOTE 1


LIGHT FIXTURE SCHEDULE NOTES:

GENERAL:

- 1. MATCH MOUNTING HARDWARE AND FRAME WITH CEILING TYPE OR CONSTRUCTION IN WHICH FIXTURE IS TO BE INSTALLED. COORDINATE WITH ARCHITECTURAL REFLECTED CEILING PLANS AND FINISH SCHEDULES
- 2. SEE SPECIFICATION SECTION 265100 FOR ADDITIONAL LED INFORMATION.

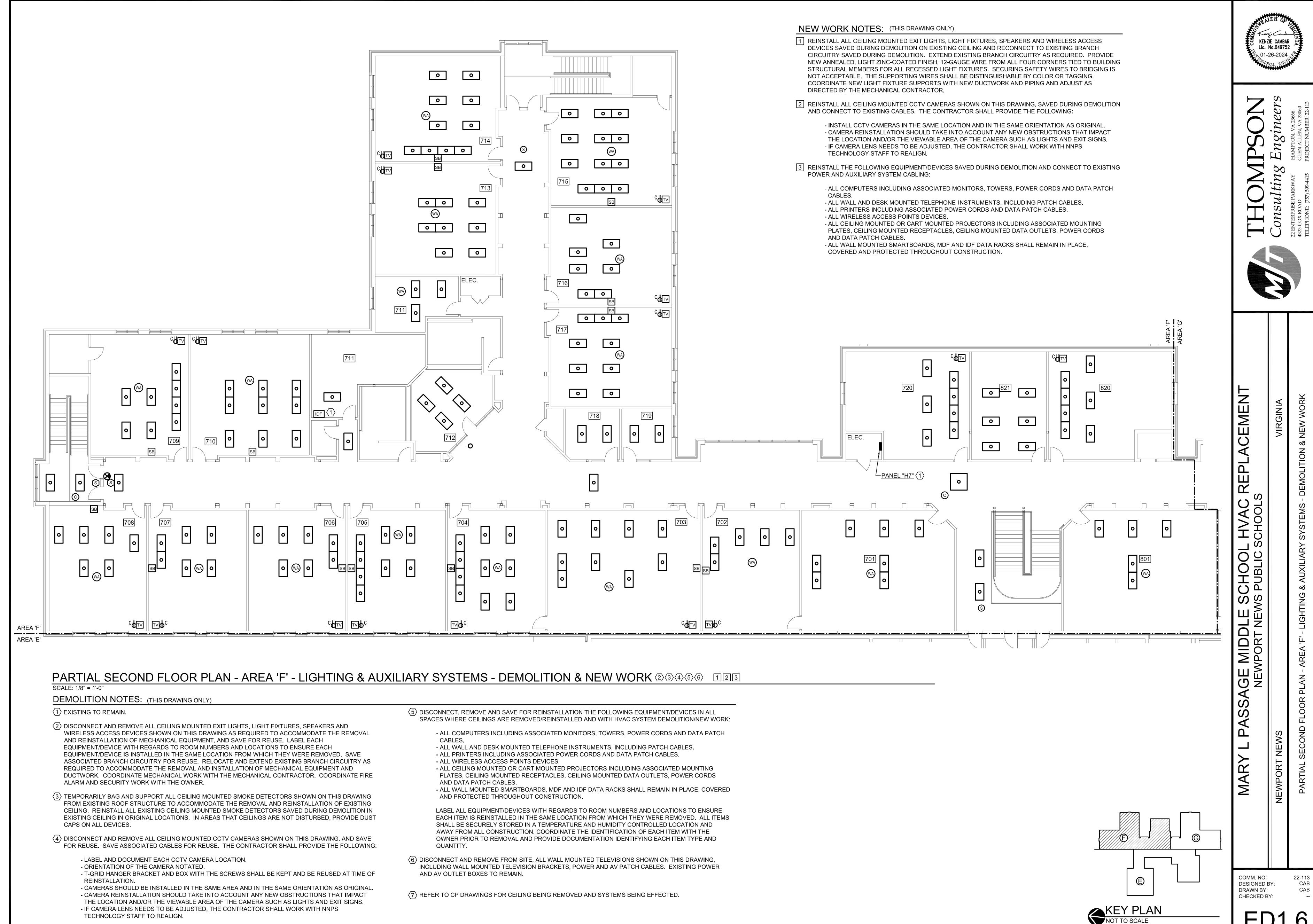
SPECIFIC:

1. PROVIDE PENDANT LENGTH AS REQUIRED TO INSTALL LIGHT FIXTURE +8'-0" A.F.F. TO BOTTOM OF FIXTURE, U.O.N. COORDINATE NEW LIGHT FIXTURE LOCATION AND SUPPORTS WITH NEW DUCTWORK AND PIPING AND ADJUST AS DIRECTED BY THE MECHANICAL CONTRACTOR.

DESIGNED BY: DRAWN BY: CHECKED BY:

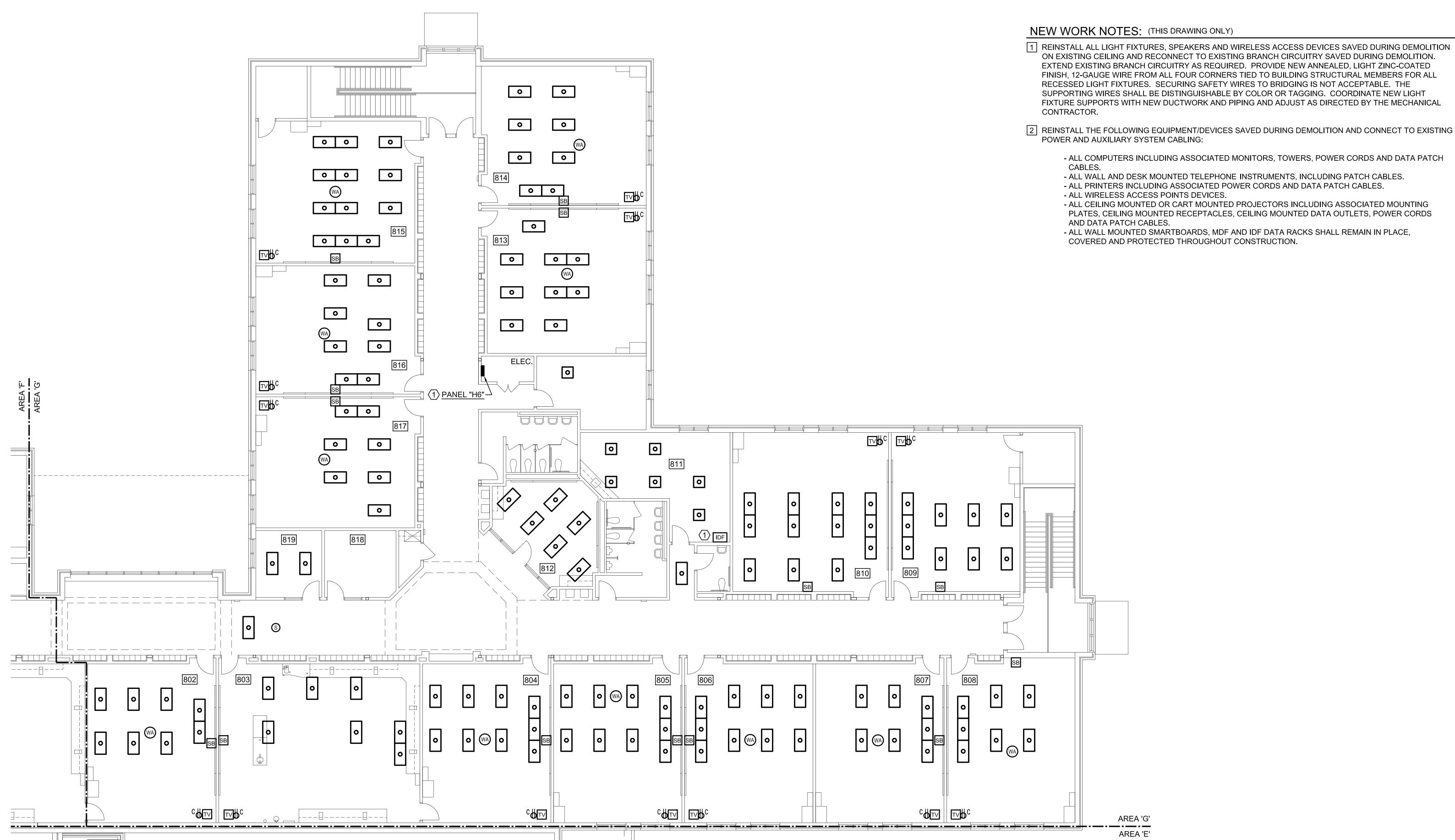
01/26/2024

© COPYRIGHT THOMPSON CONSULTING ENGINEERS



ACEMEN

EWS


SAGE MIDDLE NEWPORT NE

MAR

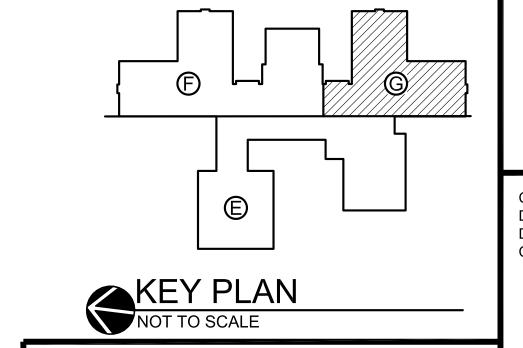
01/26/2024

DATE:

PARTIAL SECOND FLOOR PLAN - AREA 'G' - LIGHTING & AUXILIARY SYSTEMS - DEMOLITION & NEW WORK 234 12 SCALE: 1/8" = 1'-0"

DEMOLITION NOTES: (THIS DRAWING ONLY)

1 EXISTING TO REMAIN.


WORK WITH THE OWNER.

(3) DISCONNECT, REMOVE AND SAVE FOR REINSTALLATION THE FOLLOWING EQUIPMENT/DEVICES IN ALL SPACES WHERE CEILINGS ARE REMOVED/REINSTALLED AND WITH HVAC SYSTEM DEMOLITION/NEW WORK:

- ALL WALL AND DESK MOUNTED TELEPHONE INSTRUMENTS, INCLUDING PATCH CABLES.
- ALL PRINTERS INCLUDING ASSOCIATED POWER CORDS AND DATA PATCH CABLES.
- ALL WIRELESS ACCESS POINTS DEVICES.
- ALL CEILING MOUNTED OR CART MOUNTED PROJECTORS INCLUDING ASSOCIATED MOUNTING PLATES, CEILING MOUNTED RECEPTACLES, CEILING MOUNTED DATA OUTLETS, POWER CORDS AND DATA PATCH
- ALL WALL MOUNTED SMARTBOARDS, MDF AND IDF DATA RACKS SHALL REMAIN IN PLACE, COVERED AND PROTECTED THROUGHOUT CONSTRUCTION.

LABEL ALL EQUIPMENT/DEVICES WITH REGARDS TO ROOM NUMBERS AND LOCATIONS TO ENSURE EACH ITEM IS REINSTALLED IN THE SAME LOCATION FROM WHICH THEY WERE REMOVED. ALL ITEMS SHALL BE SECURELY STORED IN A TEMPERATURE AND HUMIDITY CONTROLLED LOCATION AND AWAY FROM ALL CONSTRUCTION. COORDINATE THE IDENTIFICATION OF EACH ITEM WITH THE OWNER PRIOR TO REMOVAL AND PROVIDE DOCUMENTATION IDENTIFYING EACH ITEM TYPE AND QUANTITY.

- 4 DISCONNECT AND REMOVE FROM SITE, ALL WALL MOUNTED TELEVISIONS SHOWN ON THIS DRAWING, INCLUDING WALL MOUNTED TELEVISION BRACKETS, POWER AND AV PATCH CABLES. EXISTING POWER AND AV OUTLET BOXES TO REMAIN.
- (5) REFER TO CP DRAWINGS FOR CEILING BEING REMOVED AND SYSTEMS BEING EFFECTED.

- ALL COMPUTERS INCLUDING ASSOCIATED MONITORS, TOWERS, POWER CORDS AND DATA PATCH

- ALL WALL AND DESK MOUNTED TELEPHONE INSTRUMENTS, INCLUDING PATCH CABLES.

- ALL PRINTERS INCLUDING ASSOCIATED POWER CORDS AND DATA PATCH CABLES.

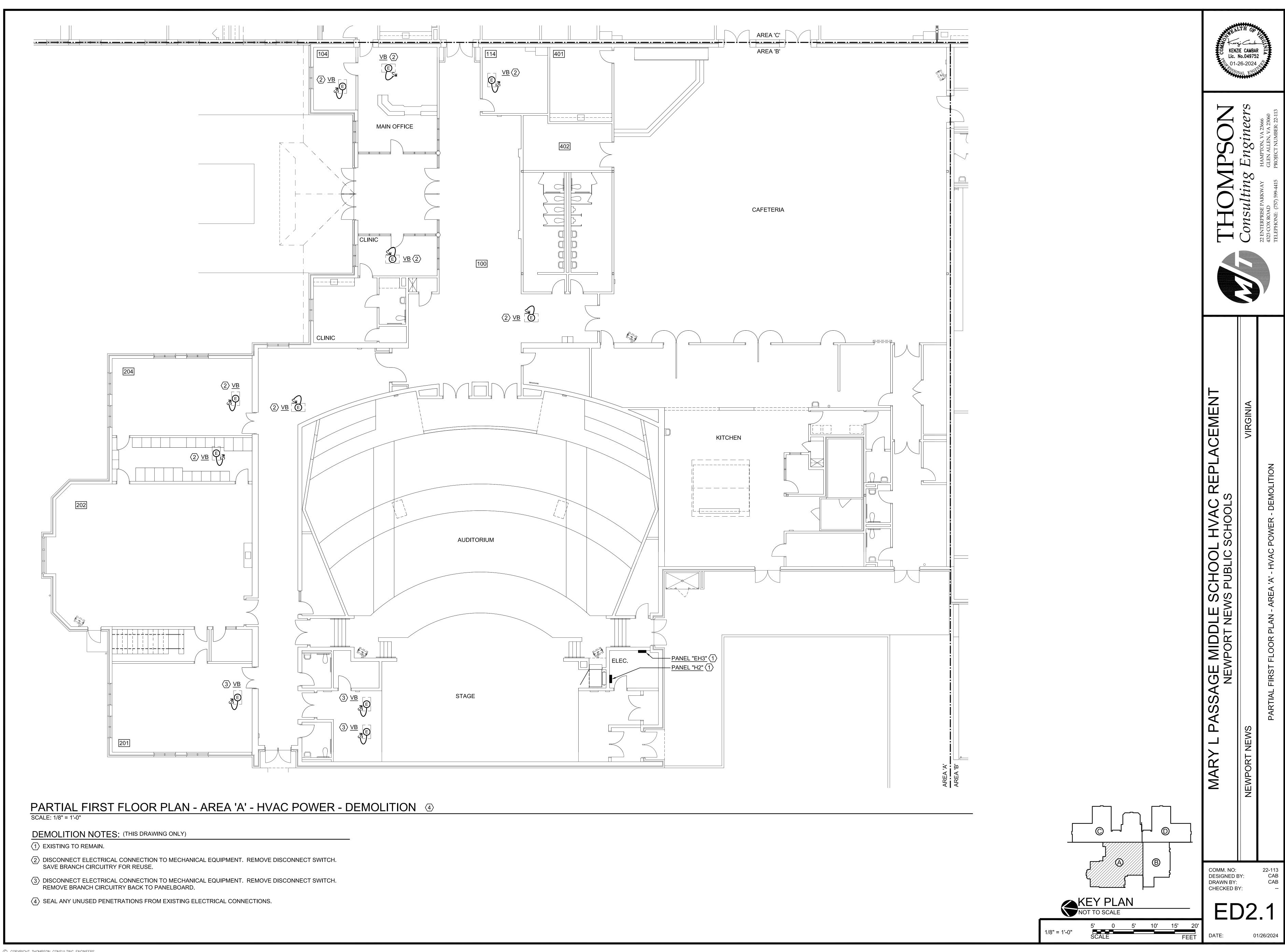
- ALL WIRELESS ACCESS POINTS DEVICES.

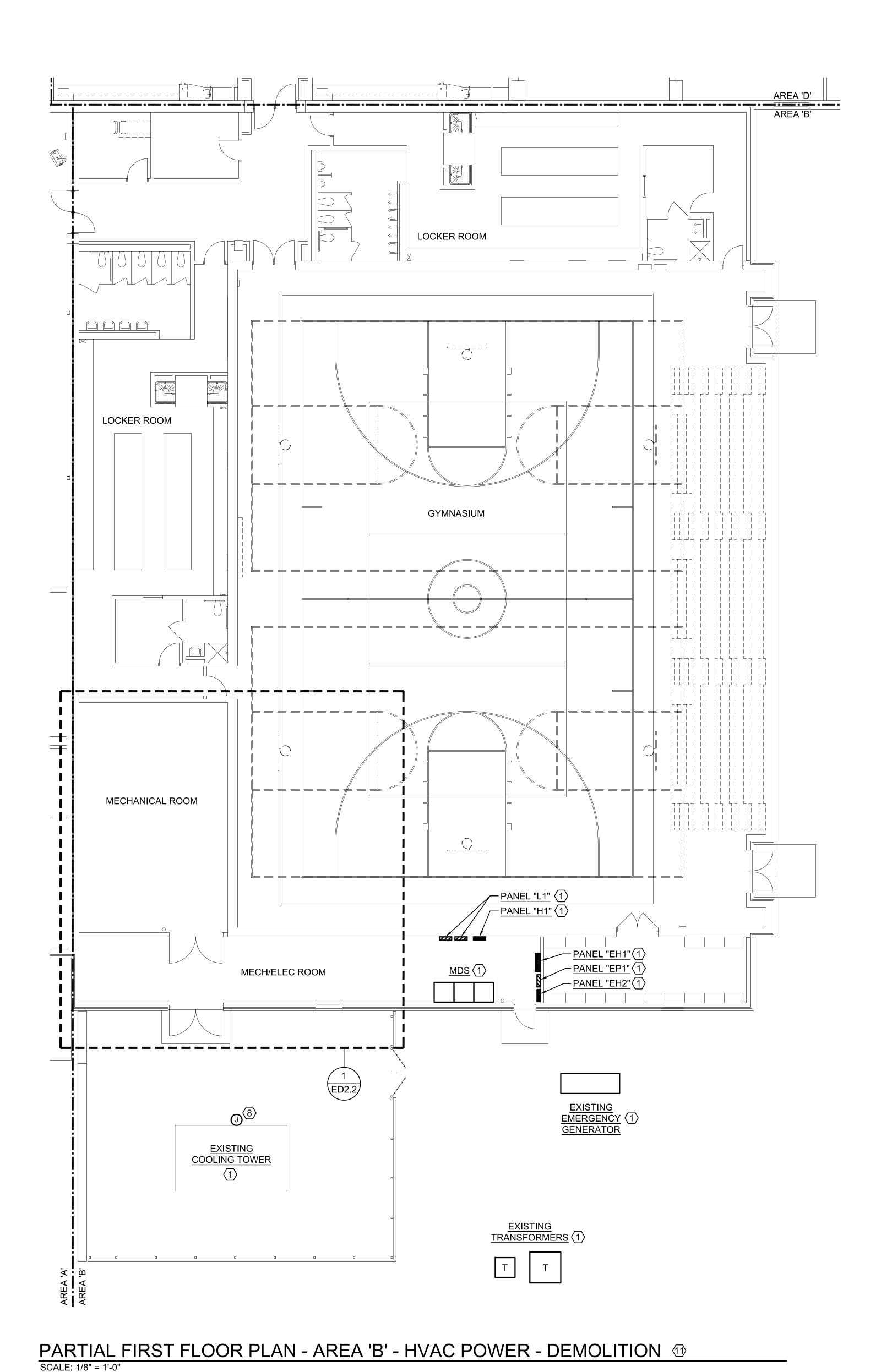
- ALL CEILING MOUNTED OR CART MOUNTED PROJECTORS INCLUDING ASSOCIATED MOUNTING PLATES, CEILING MOUNTED RECEPTACLES, CEILING MOUNTED DATA OUTLETS, POWER CORDS

- ALL WALL MOUNTED SMARTBOARDS, MDF AND IDF DATA RACKS SHALL REMAIN IN PLACE,

COVERED AND PROTECTED THROUGHOUT CONSTRUCTION.

ACEMEN


PASSAGE MIDDLE SCHOOL
NEWPORT NEWS PUBLIC S


22-113

01/26/2024

COMM NO. DESIGNED BY: DRAWN BY: CHECKED BY:

MAR

DEMOLITION NOTES: (THIS DRAWING ONLY)

 $\langle 1 \rangle$ EXISTING TO REMAIN.

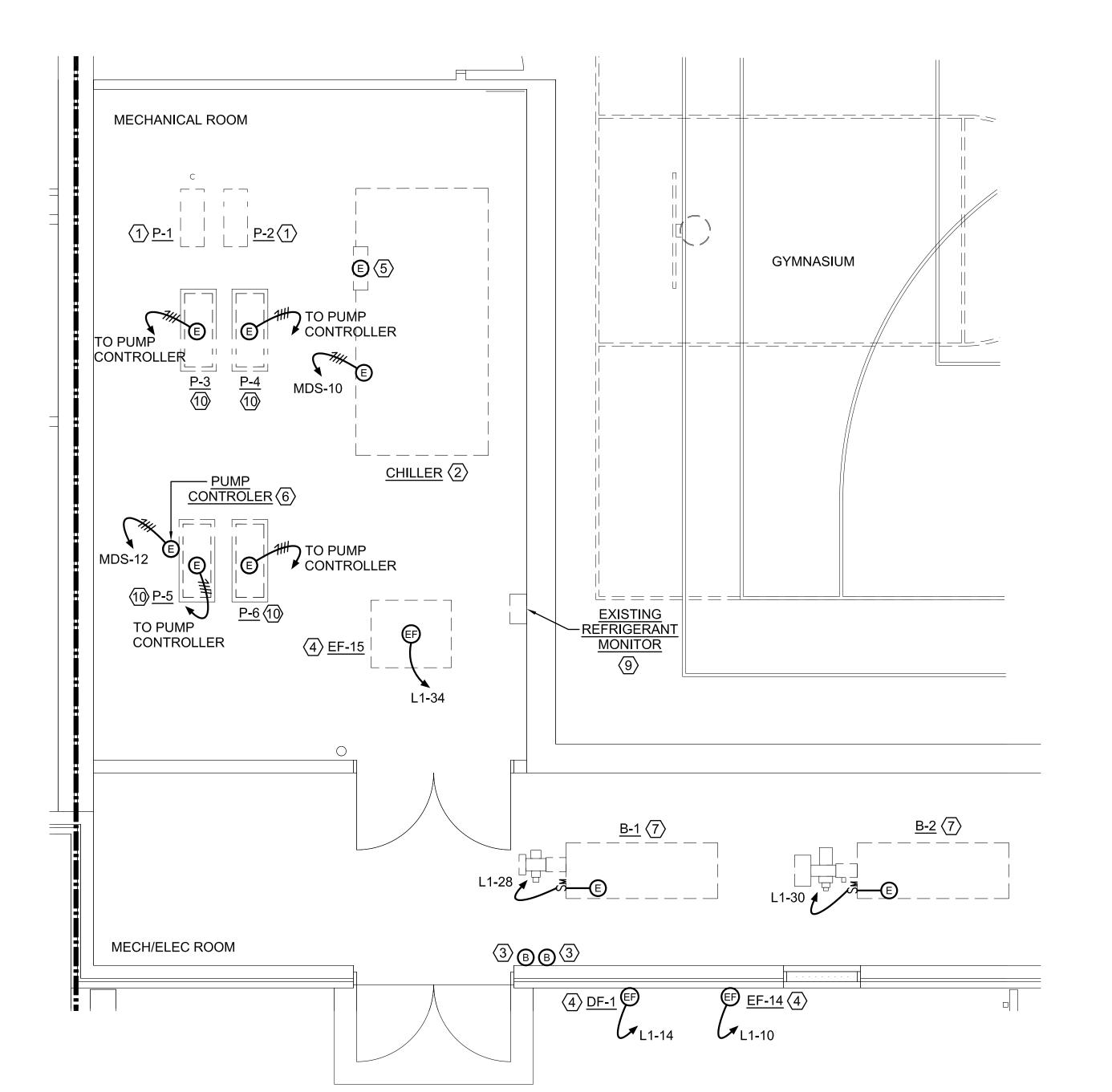
 $\langle 2 \rangle$ DISCONNECT ELECTRICAL CONNECTION TO MECHANICAL EQUIPMENT. SAVE BRANCH CIRCUITRY FOR REUSE.

 $\langle \overline{3} \rangle$ EXISTING BOILER EMERGENCY SHUT OFF PUSH BUTTON TO REMAIN. REMOVE BRANCH CIRCUITRY BACK TO EMERGENCY PUSH BUTTONS.

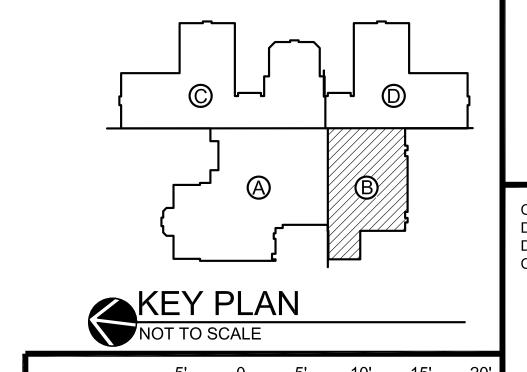
(4) DISCONNECT ELECTRICAL CONNECTION TO MECHANICAL EQUIPMENT. REMOVE HOMERUN BRANCH CIRCUITRY BACK TO PANELBOARD.

(5) DISCONNECT ELECTRICAL CONNECTION TO CHILLER CONTROLS. SAVE HOMERUN BRANCH CIRCUITRY FOR REUSE.

6 DISCONNECT ELECTRICAL CONNECTION TO MECHANICAL EQUIPMENT. REMOVE BRANCH CIRCUITRY BACK TO MDS.


7 DISCONNECT ELECTRICAL CONNECTION TO BOILER. REMOVE BRANCH CIRCUITRY BACK TO PANELBOARD.

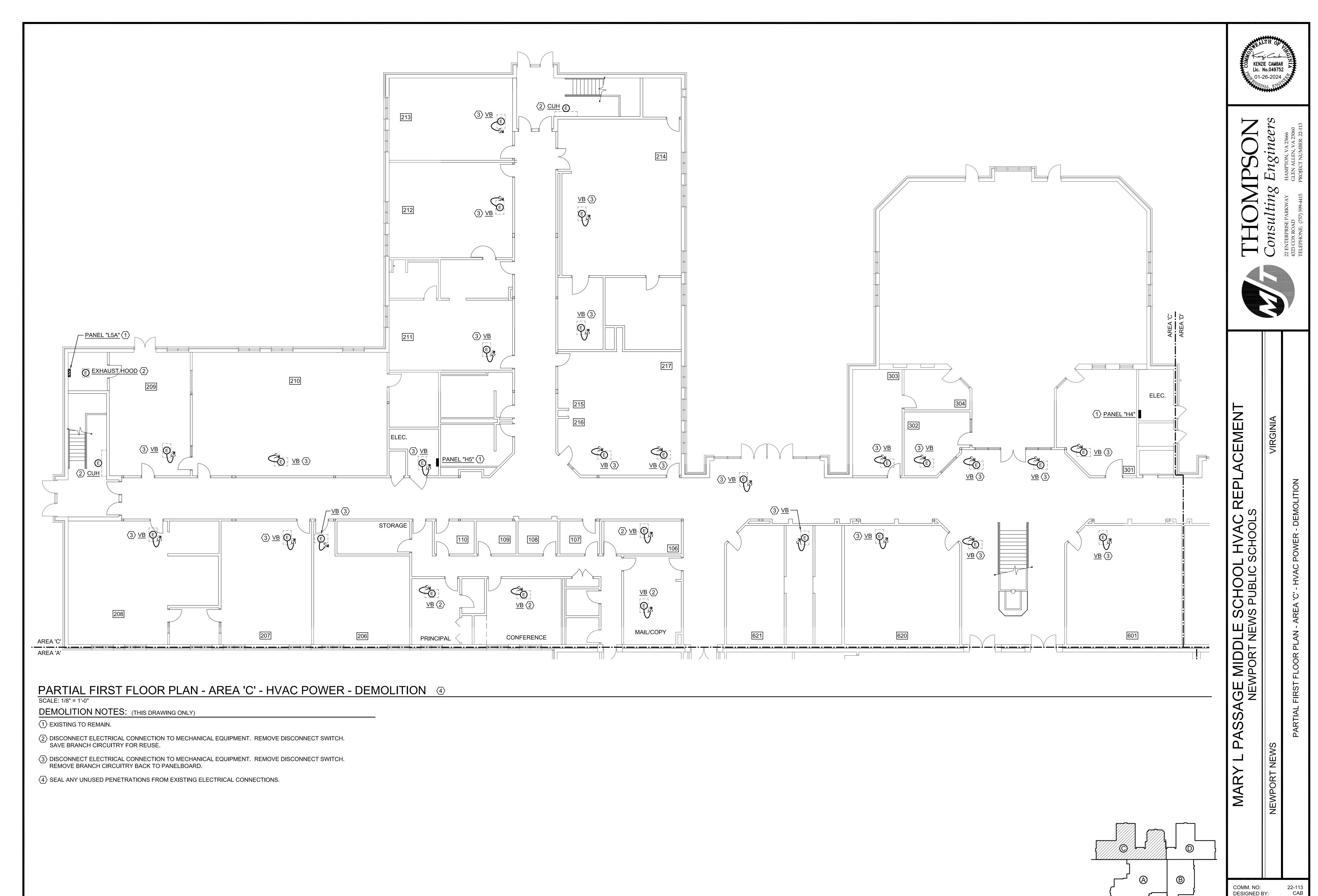
(8) REMOVE EXISTING JUNCTION BOX AT COOLING TOWER. SAVE BRANCH CIRCUITRY FOR REUSE. PROVIDE NEW 12" X 12" PVC GASKETED BOX AND RECONNECT BRANCH CIRCUITRY.

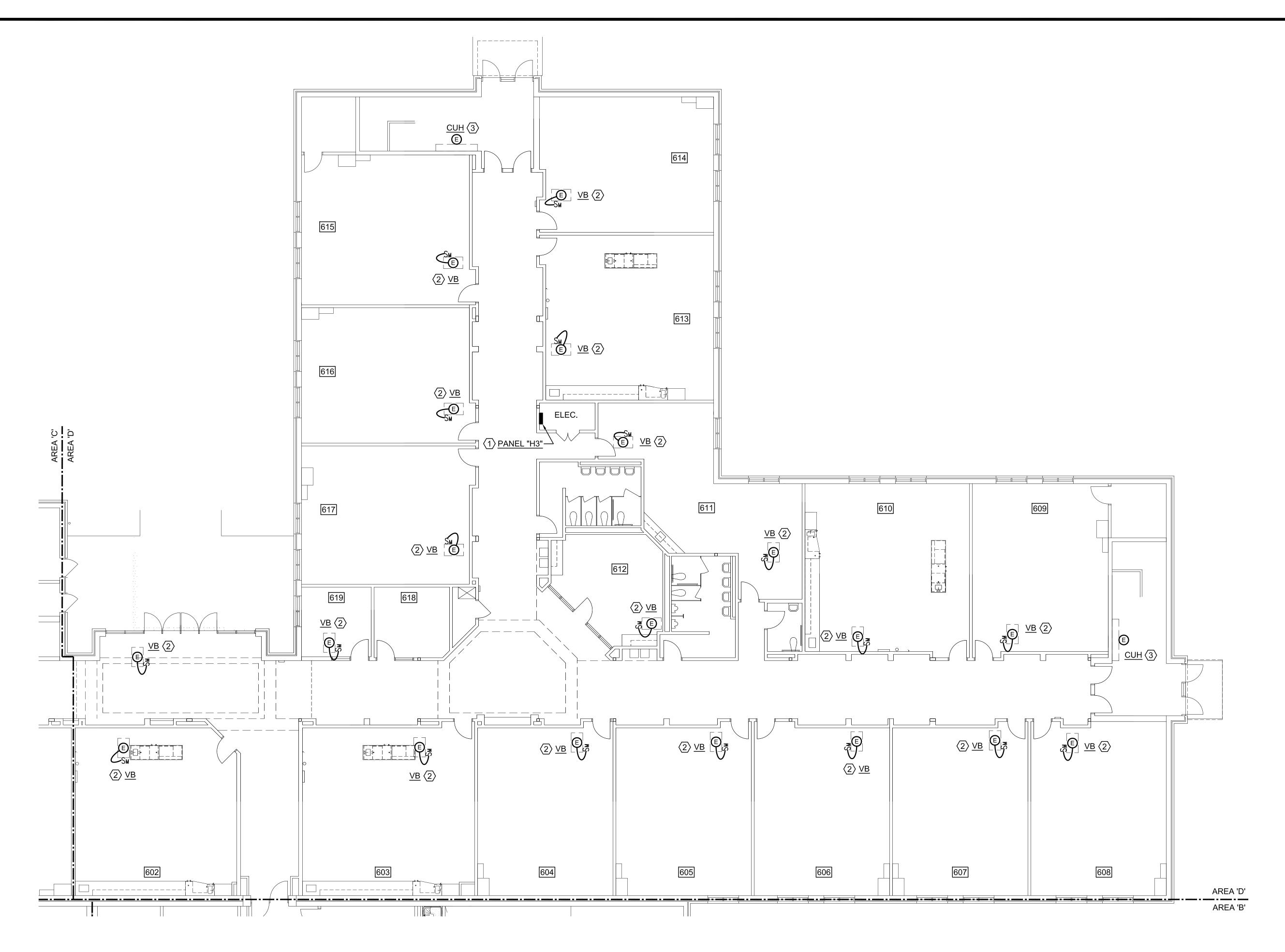

(9) DISCONNECT ELECTRICAL CONNECTION TO REFRIGERANT MONITOR. SAVE BRANCH CIRCUITRY FOR REUSE.

1 DISCONNECT ELECTRICAL CONNECTION TO MECHANICAL EQUIPMENT. REMOVE HOMERUN BRANCH CIRCUITRY BACK TO PUMP CONTROLLER.

(11) SEAL ANY UNUSED PENETRATIONS FROM EXISTING ELECTRICAL CONNECTIONS.

ENLARGED MAIN MECHANICAL & ELECTRICAL ROOMS PLAN - HVAC POWER - DEMOLITION 119 ED2.2 SCALE: 1/4" = 1'-0"


KENZIE CAMBAR Lic. No.049752


PASSAGE MIDDLE SCHOOL HVAC REPLACEMEN NEWPORT NEWS PUBLIC SCHOOLS

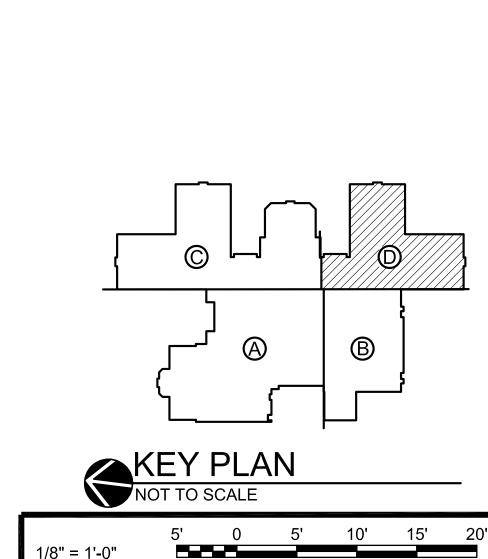
MARY L

CHECKED BY:

ED2.2

PARTIAL FIRST FLOOR PLAN - AREA 'D' - HVAC POWER - DEMOLITION 4

SCALE: 1/8" = 1'-0"


DEMOLITION NOTES: (THIS DRAWING ONLY)

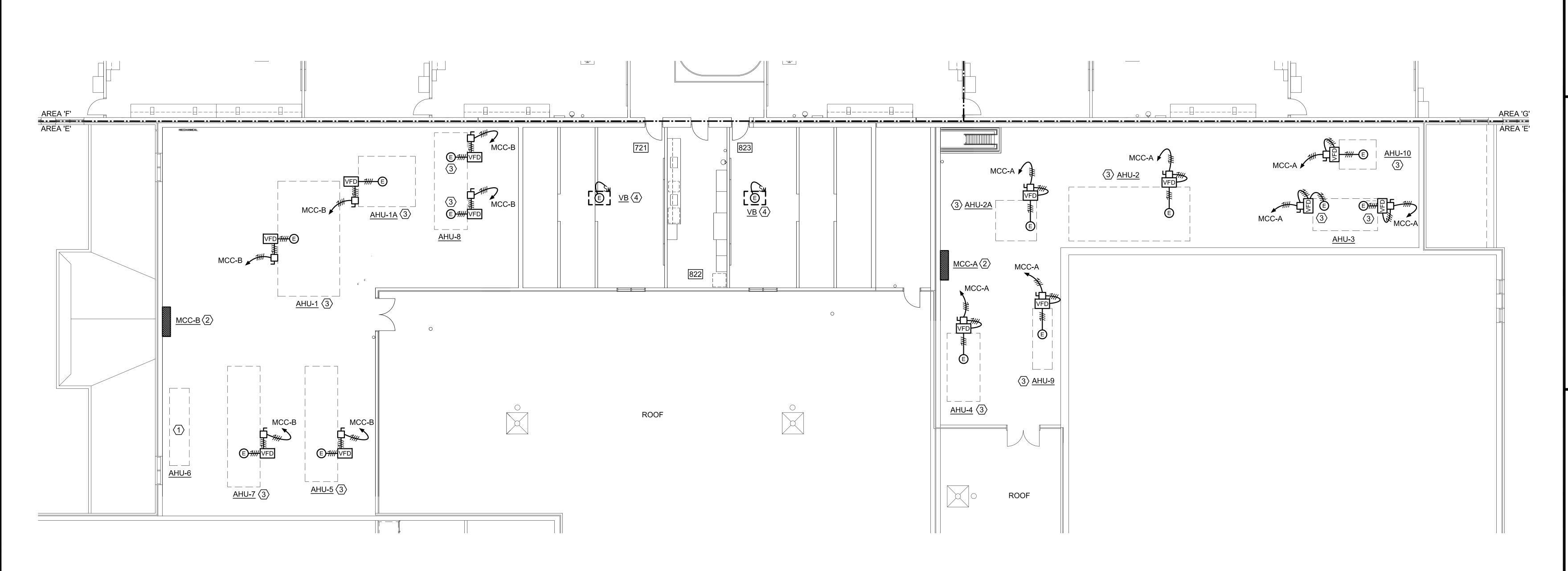
1 EXISTING TO REMAIN.

② DISCONNECT ELECTRICAL CONNECTION TO MECHANICAL EQUIPMENT. REMOVE DISCONNECT SWITCH. SAVE BRANCH CIRCUITRY FOR REUSE.

(3) DISCONNECT ELECTRICAL CONNECTION TO MECHANICAL EQUIPMENT. REMOVE BRANCH CIRCUITRY BACK TO LAST RECEPTACLE TO REMAIN.

4 SEAL ANY UNUSED PENETRATIONS FROM EXISTING ELECTRICAL CONNECTIONS.

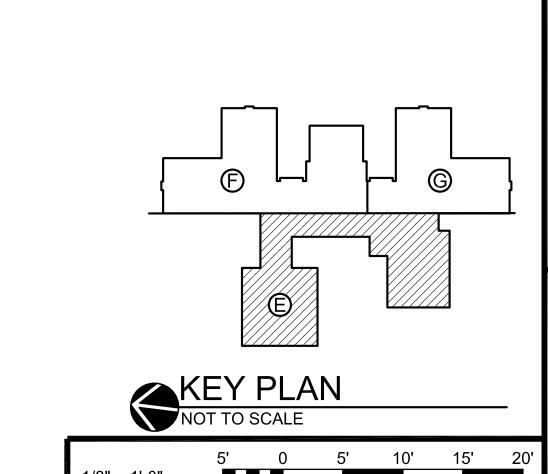
THOMPSO


Consulting Engine

22 ENTERPRISE PARKWAY HAMPTON, VA 236

MARY L PASSAGE MIDDLE SCHOOL HVAC I NEWPORT NEWS PUBLIC SCHOOLS

REPLACEMENT



PARTIAL SECOND FLOOR PLAN - AREA 'E' - HVAC POWER - DEMOLITION 5

SCALE: 1/8" = 1'-0"

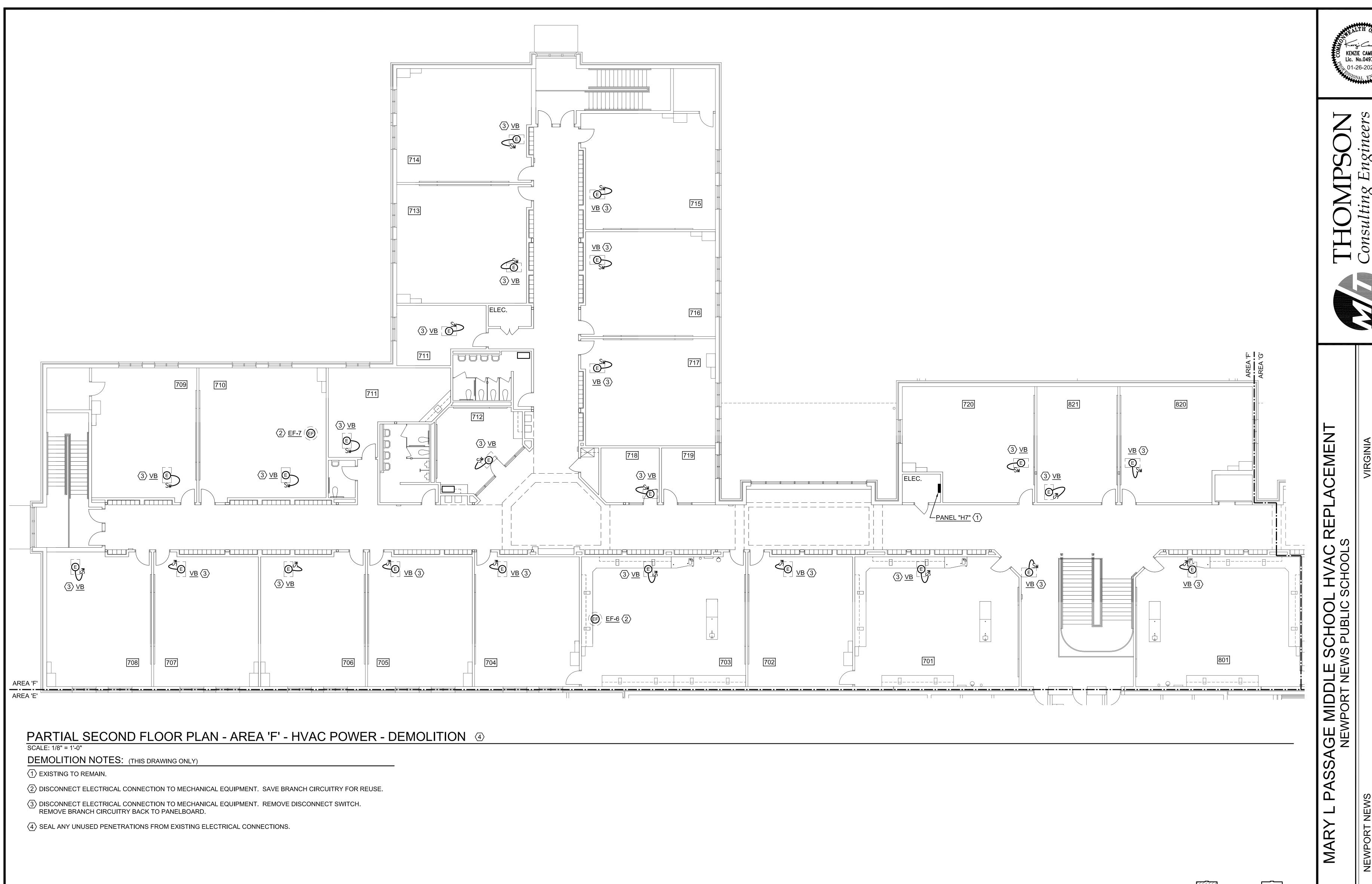
DEMOLITION NOTES: (THIS DRAWING ONLY)

- 1 EXISTING TO REMAIN NOT IN CONTRACT.
- (2) REMOVE EXISTING MOTOR CONTROL CENTER. SAVE HOMERUN BRANCH FEEDERS TO MOTOR CONTROL CENTER FOR REUSE.
- (3) DISCONNECT ELECTRICAL CONNECTION TO MECHANICAL EQUIPMENT. REMOVE DISCONNECT SWITCH. REMOVE BRANCH CIRCUITRY BACK TO MOTOR CONTROL CENTER.
- 4 DISCONNECT ELECTRICAL CONNECTION TO MECHANICAL EQUIPMENT. REMOVE DISCONNECT SWITCH. REMOVE BRANCH CIRCUITRY BACK TO PANELBOARD.
- (5) SEAL ANY UNUSED PENETRATIONS FROM EXISTING ELECTRICAL CONNECTIONS.

HOMPSON

TERPRISE PARKWAY

HAMPTON, VA 23666



PASSAGE MIDDLE SCHOOL HVAC REPLACEMENT
NEWPORT NEWS PUBLIC SCHOOLS

NEWPORT NEWS

COMM. NO: DESIGNED BY: DRAWN BY: CHECKED BY:

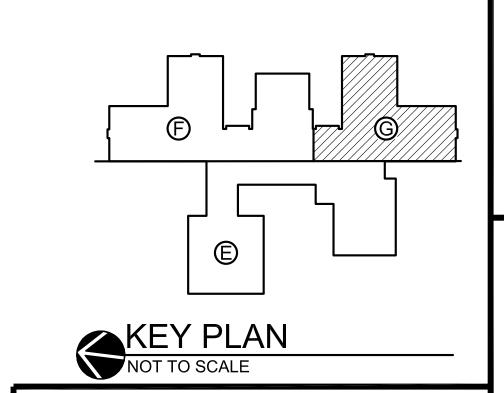
ED2.5

KEY PLAN

NOT TO SCALE

5' 0 5' 10' 15' 20'

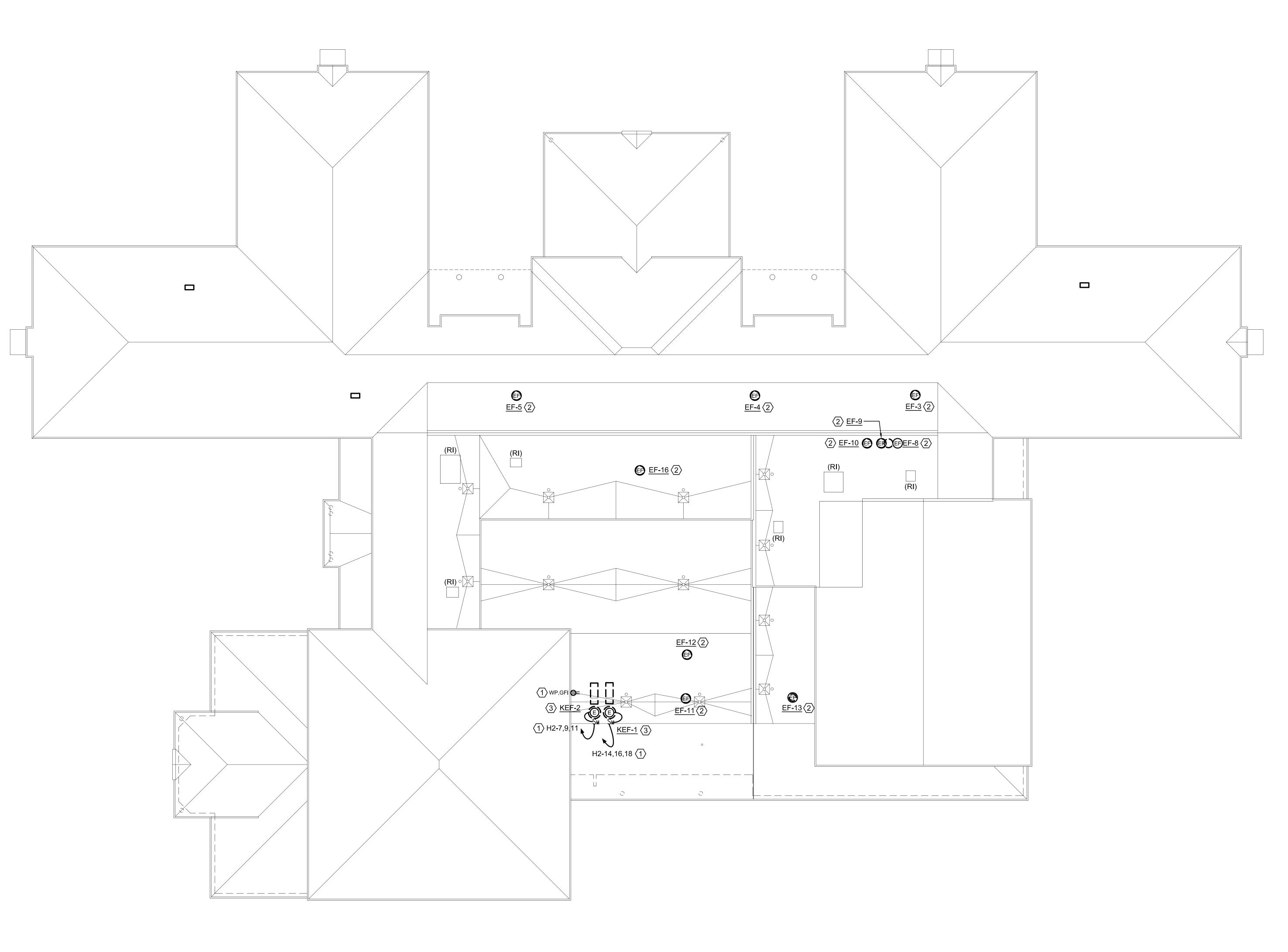
COMM. NO: 22
DESIGNED BY:
DRAWN BY:
CHECKED BY:


PARTIAL SECOND FLOOR PLAN - AREA 'G' - HVAC POWER - DEMOLITION 4

SCALE: 1/8" = 1'-0"

DEMOLITION NOTES: (THIS DRAWING ONLY)

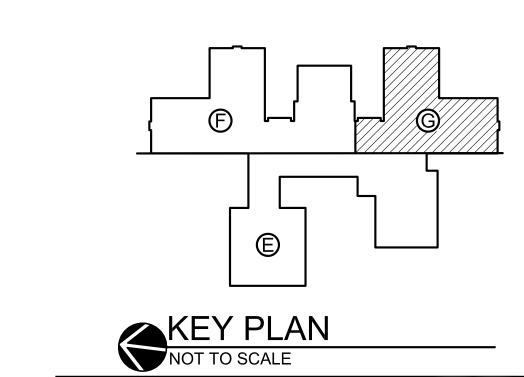
1 EXISTING TO REMAIN.


- 2 DISCONNECT ELECTRICAL CONNECTION TO MECHANICAL EQUIPMENT. SAVE BRANCH CIRCUITRY FOR REUSE.
- (3) DISCONNECT ELECTRICAL CONNECTION TO MECHANICAL EQUIPMENT. REMOVE DISCONNECT SWITCH. REMOVE BRANCH CIRCUITRY BACK TO PANELBOARD.
- 4 SEAL ANY UNUSED PENETRATIONS FROM EXISTING ELECTRICAL CONNECTIONS.

ACEMEN

PASSAGE MIDDLE SCHOOL HVAC

DESIGNED BY: DRAWN BY: CHECKED BY:


ROOF PLAN - HVAC POWER - DEMOLITION 4

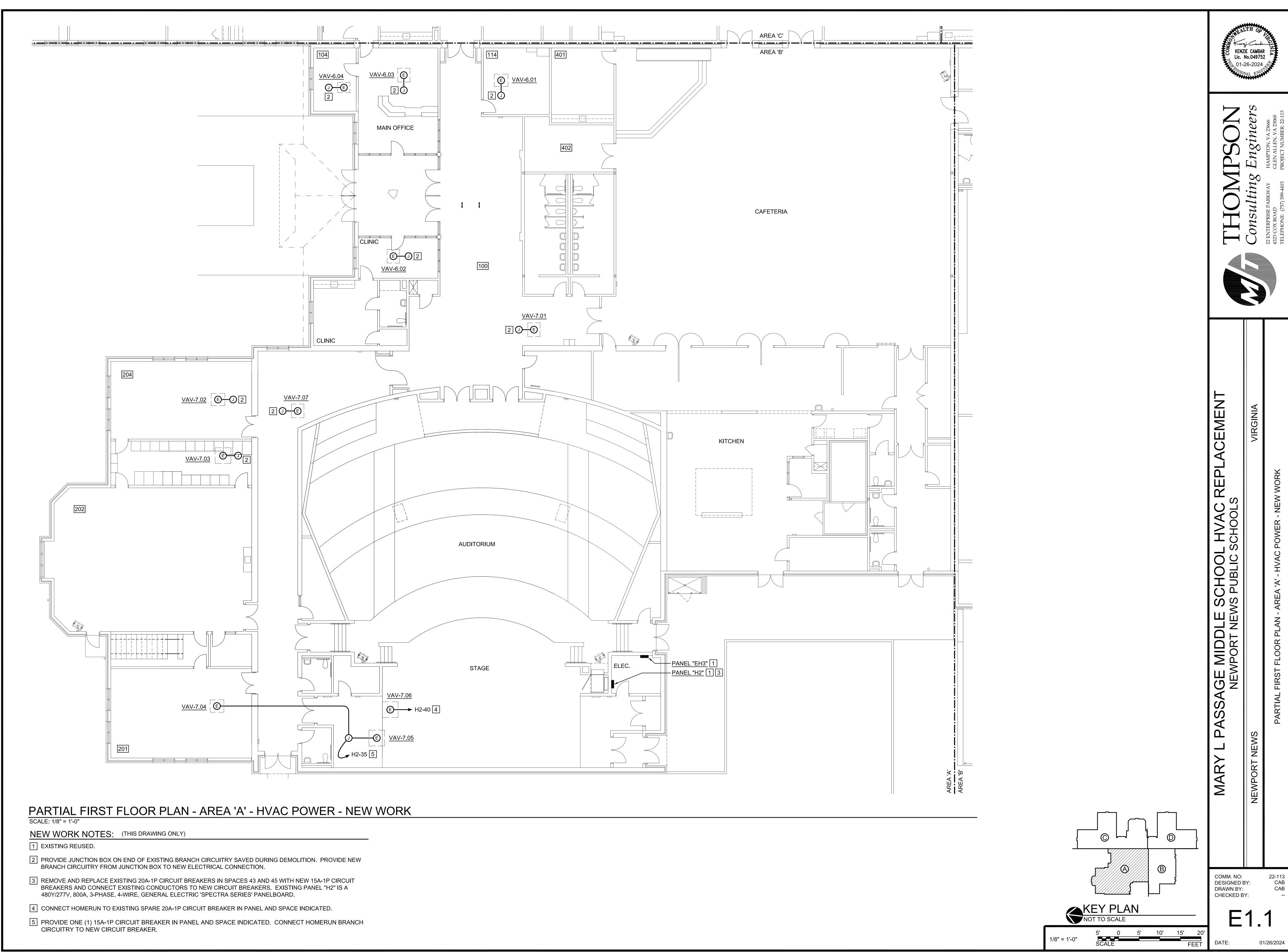
SCALE: 1/16" = 1'-0"

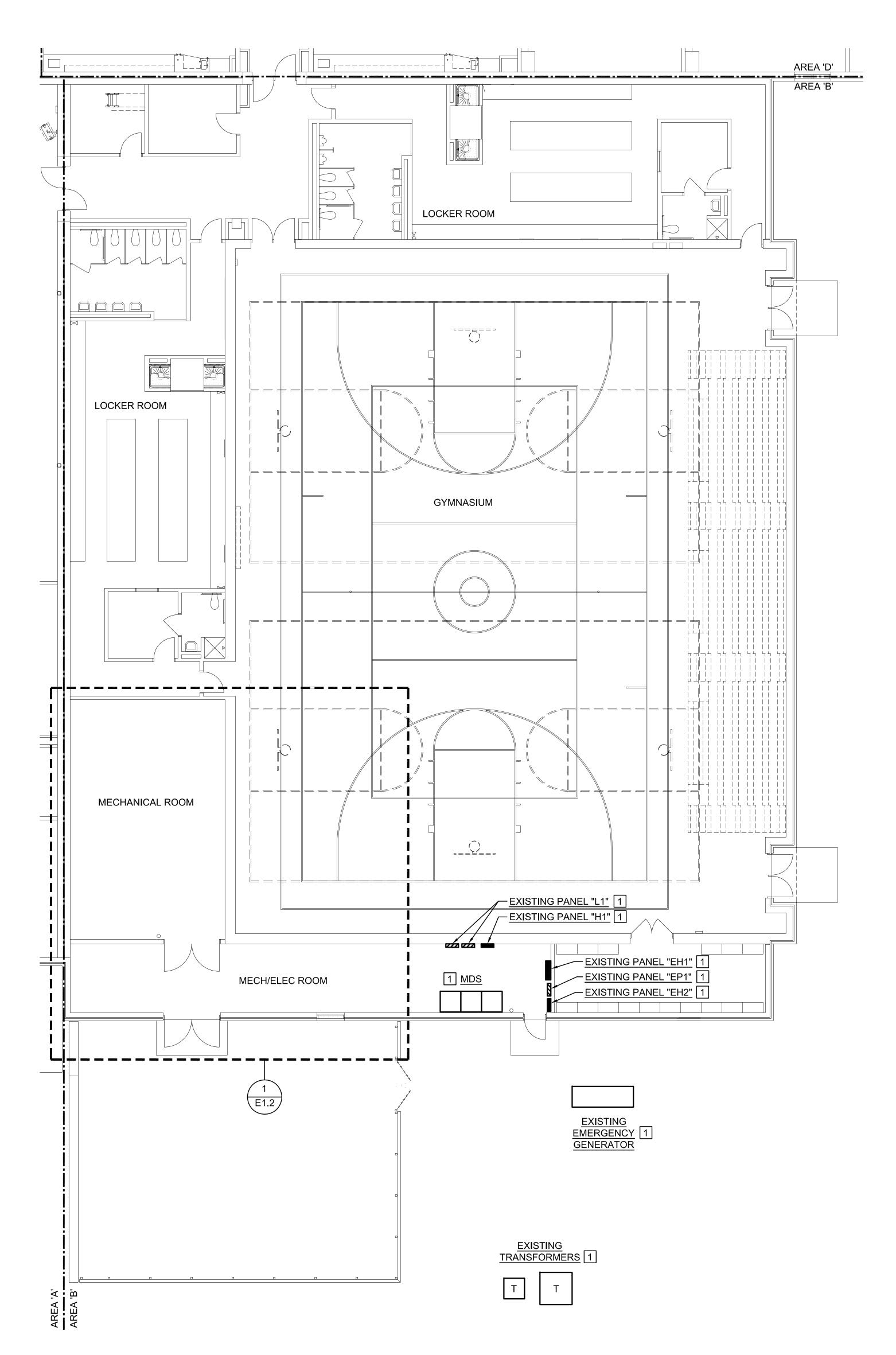
DEMOLITION NOTES: (THIS DRAWING ONLY)

(1) EXISTING TO REMAIN.

- (2) DISCONNECT ELECTRICAL CONNECTION TO MECHANICAL EQUIPMENT. REMOVE HOMERUN BRANCH CIRCUITRY TO BELOW ROOF AND SAVE FOR REUSE.
- (3) DISCONNECT ELECTRICAL CONNECTION TO MECHANICAL EQUIPMENT. REMOVE DISCONNECT SWITCH. REMOVE HOMERUN BRANCH CIRCUITRY TO BELOW ROOF AND SAVE FOR REUSE.
- $\langle 4 \rangle$ SEAL ANY UNUSED PENETRATIONS FROM EXISTING ELECTRICAL CONNECTIONS.

IHOMIFYSON


CONSULTING ENGINE ALIEN VA 23666



MARY L PASSAGE MIDDLE SCHOOL HVAC REPLACEMENT NEWPORT NEWS PUBLIC SCHOOLS

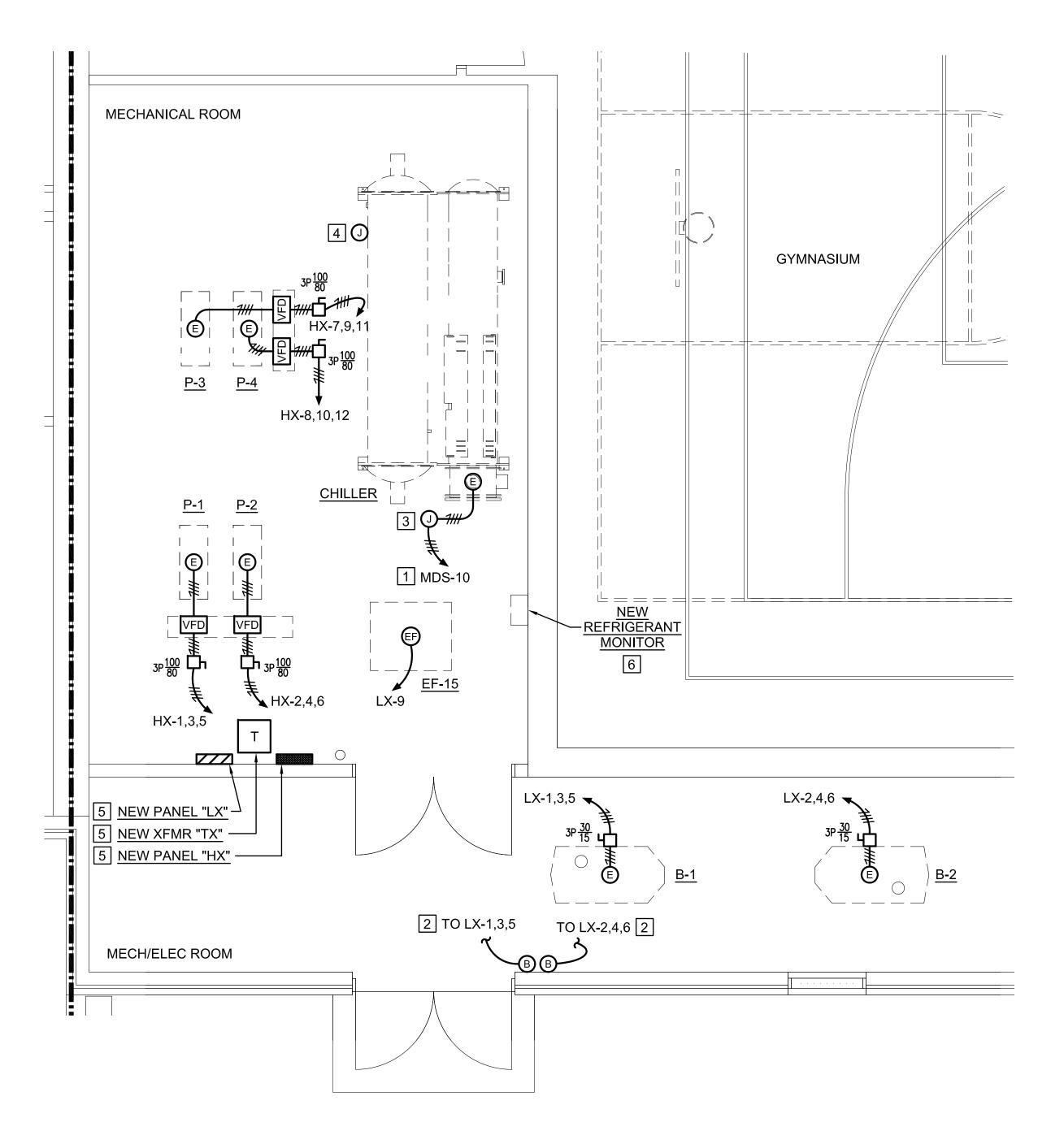
COMM. NO: DESIGNED BY: DRAWN BY: CHECKED BY:

ED2.8

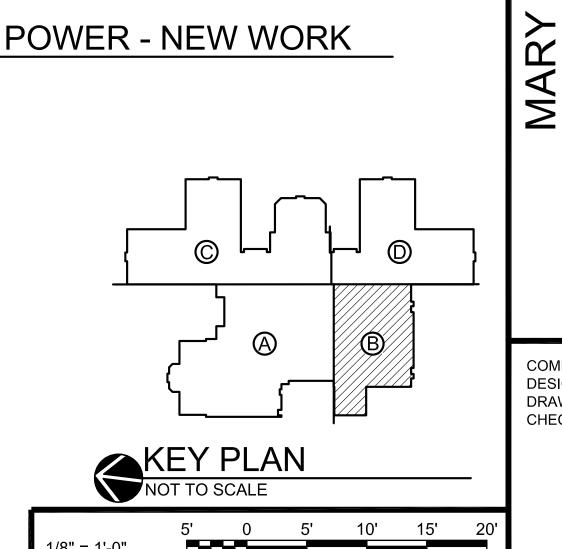
PARTIAL FIRST FLOOR PLAN - AREA 'B' - HVAC POWER - NEW WORK SCALE: 1/8" = 1'-0"

NEW WORK NOTES: (THIS DRAWING ONLY)

1 EXISTING REUSED.


2 CONNECT BRANCH CIRCUITRY TO SHUNT TRIP CIRCUIT BREAKERS IN PANEL AND SPACES INDICATED.

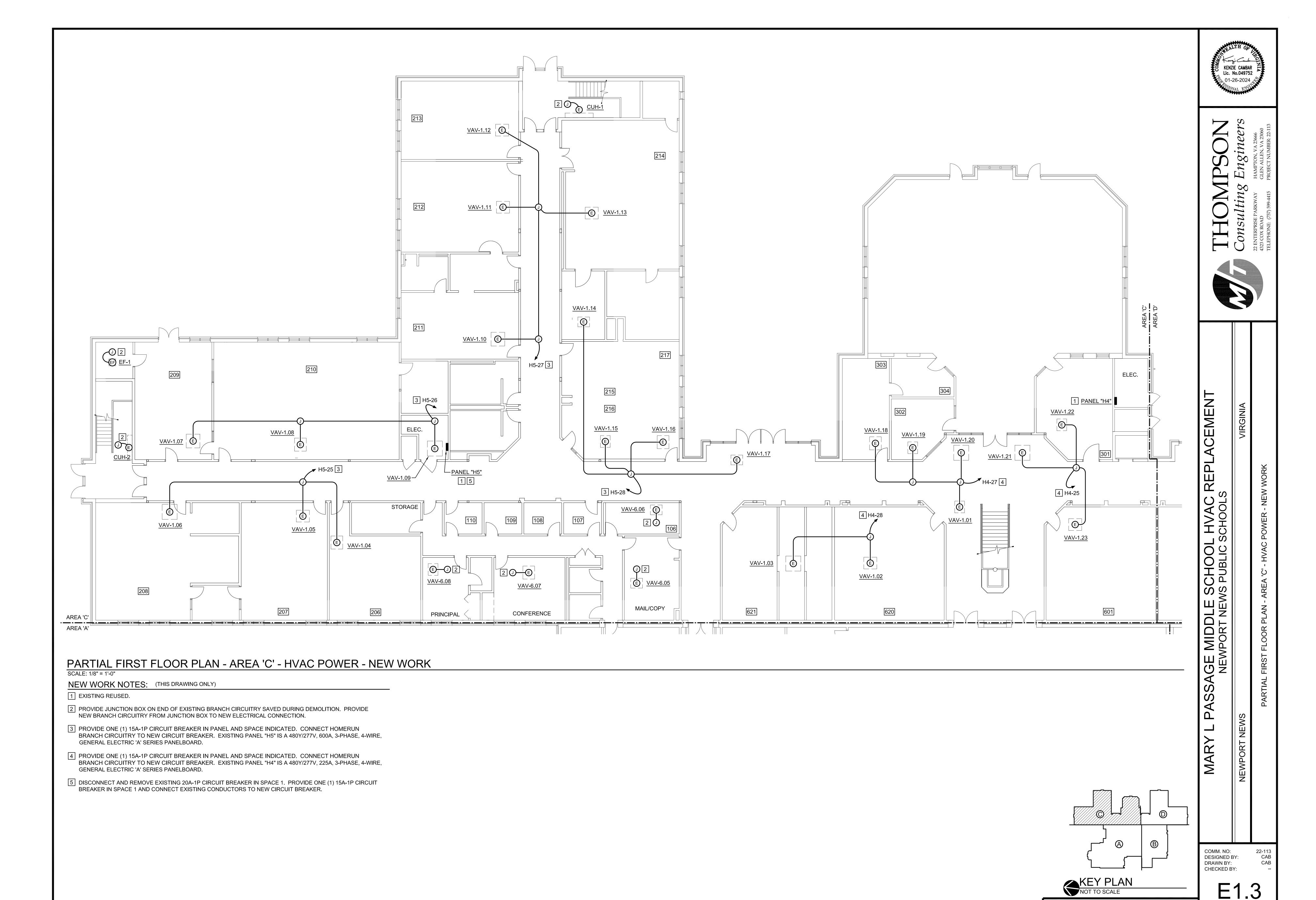
3 PROVIDE JUNCTION BOX ON END OF EXISTING HOMERUN BRANCH CIRCUITRY SAVED DURING DEMOLITION AND EXTEND EXISTING BRANCH CIRCUITRY TO NEW CHILLER.

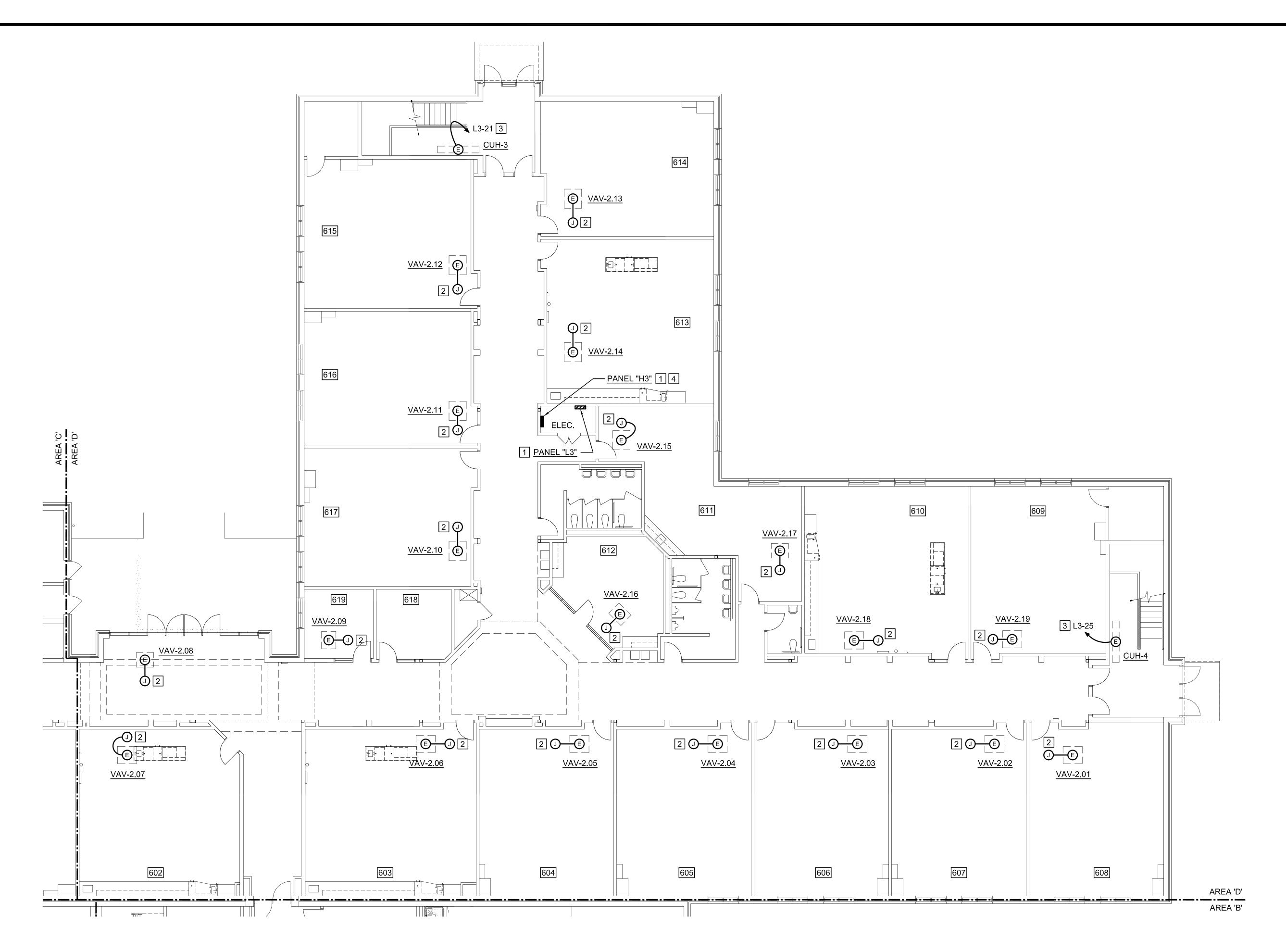

4 PROVIDE JUNCTION BOX ON END OF EXISTING HOMERUN BRANCH CIRCUITRY SAVED DURING DEMOLITION. PROVIDE 2 #12 AND 1 #12 GROUND IN 3/4" CONDUIT FROM JUNCTION BOX TO NEW CHILLER CONTROLS CABINET.

5 PROVIDE NEW EQUIPMENT. SEE "PARTIAL POWER RISER DIAGRAM" ON DRAWING E0.2 FOR ADDITIONAL INFORMATION.

6 CONNECT EXISTING BRANCH CIRCUITRY SAVED DURING DEMOLITION TO NEW REFRIGERANT MONITOR SYSTEM.

ENLARGED MAIN MECHANICAL & ELECTRICAL ROOMS PLAN - HVAC POWER - NEW WORK E1.2 | SCALE: 1/4" = 1'-0"





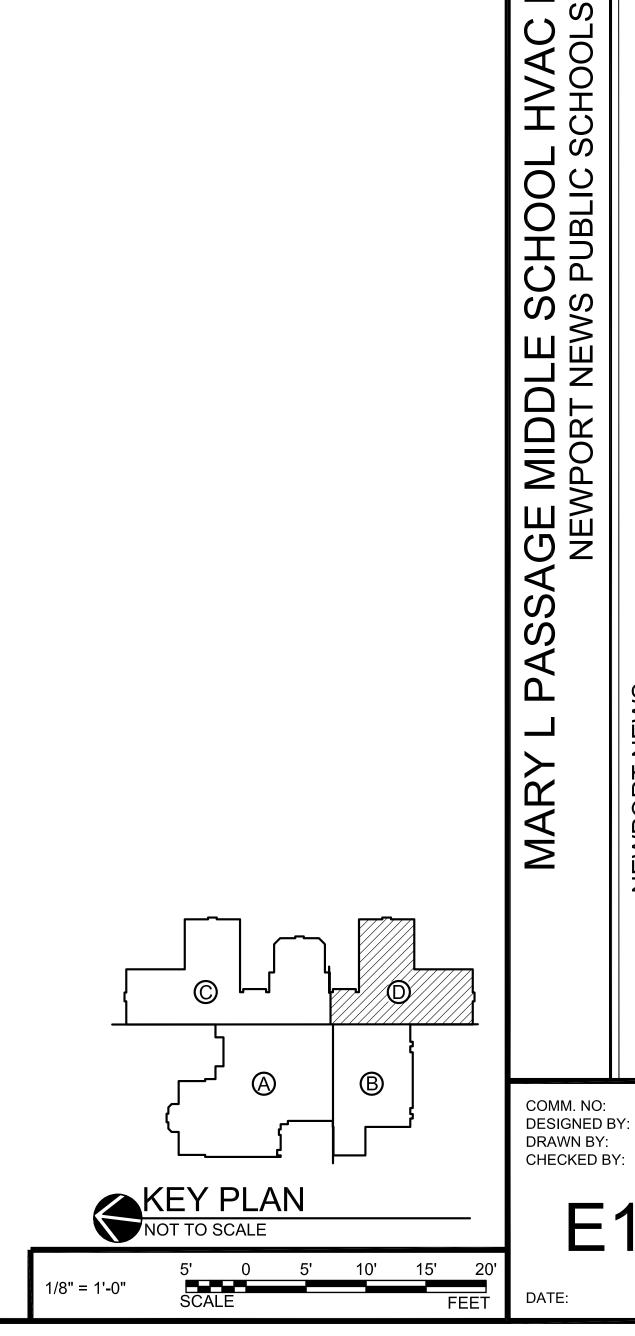
REPLACEMEN

PASSAGE MIDDLE SCHOOL HVAC

CHECKED BY:

PARTIAL FIRST FLOOR PLAN - AREA 'D' - HVAC POWER - NEW WORK

SCALE: 1/8" = 1'-0"


NEW WORK NOTES: (THIS DRAWING ONLY)

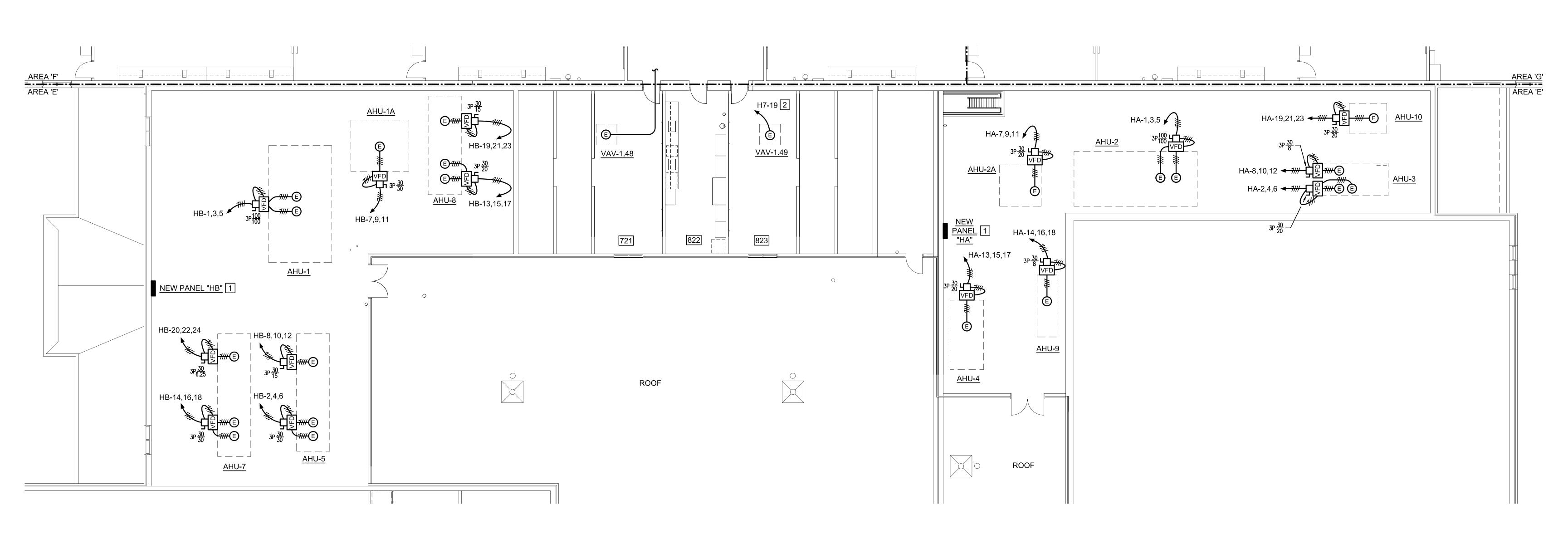
1 EXISTING REUSED.

2 PROVIDE JUNCTION BOX ON END OF EXISTING BRANCH CIRCUITRY SAVED DURING DEMOLITION. PROVIDE NEW BRANCH CIRCUITRY FROM JUNCTION BOX TO NEW ELECTRICAL CONNECTION.

3 CONNECT HOMERUN BRANCH CIRCUITRY TO EXISTING SPARE 20A-1P CIRCUIT BREAKER IN PANEL AND SPACE INDICATED.

4 REMOVE AND REPLACE EXISTING 20A-1P CIRCUIT BREAKERS IN SPACES 11, 13, 17, 19 AND 21 WITH 15A-1P CIRCUIT BREAKERS. CONNECT EXISTING BRANCH CIRCUITRY TO NEW CIRCUIT BREAKER. EXISTING PANEL "H3" IS A 480Y/277V, 225A, 3-PHASE, 4-WIRE, GENERAL ELECTRIC 'A' SERIES PANELBOARD.

© COPYRIGHT THOMPSON CONSULTING ENGINEERS



HOMPSON sulting Engineers

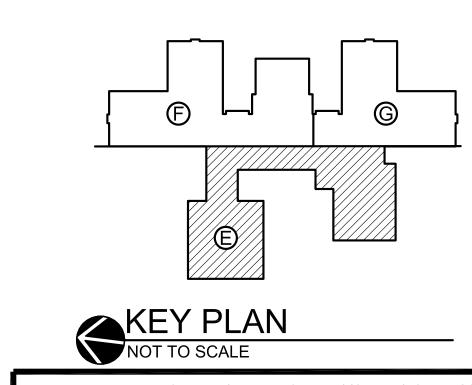
ACEMEN

REPL,

PARTIAL SECOND FLOOR PLAN - AREA 'E' - HVAC POWER - NEW WORK

SCALE: 1/8" = 1'-0"

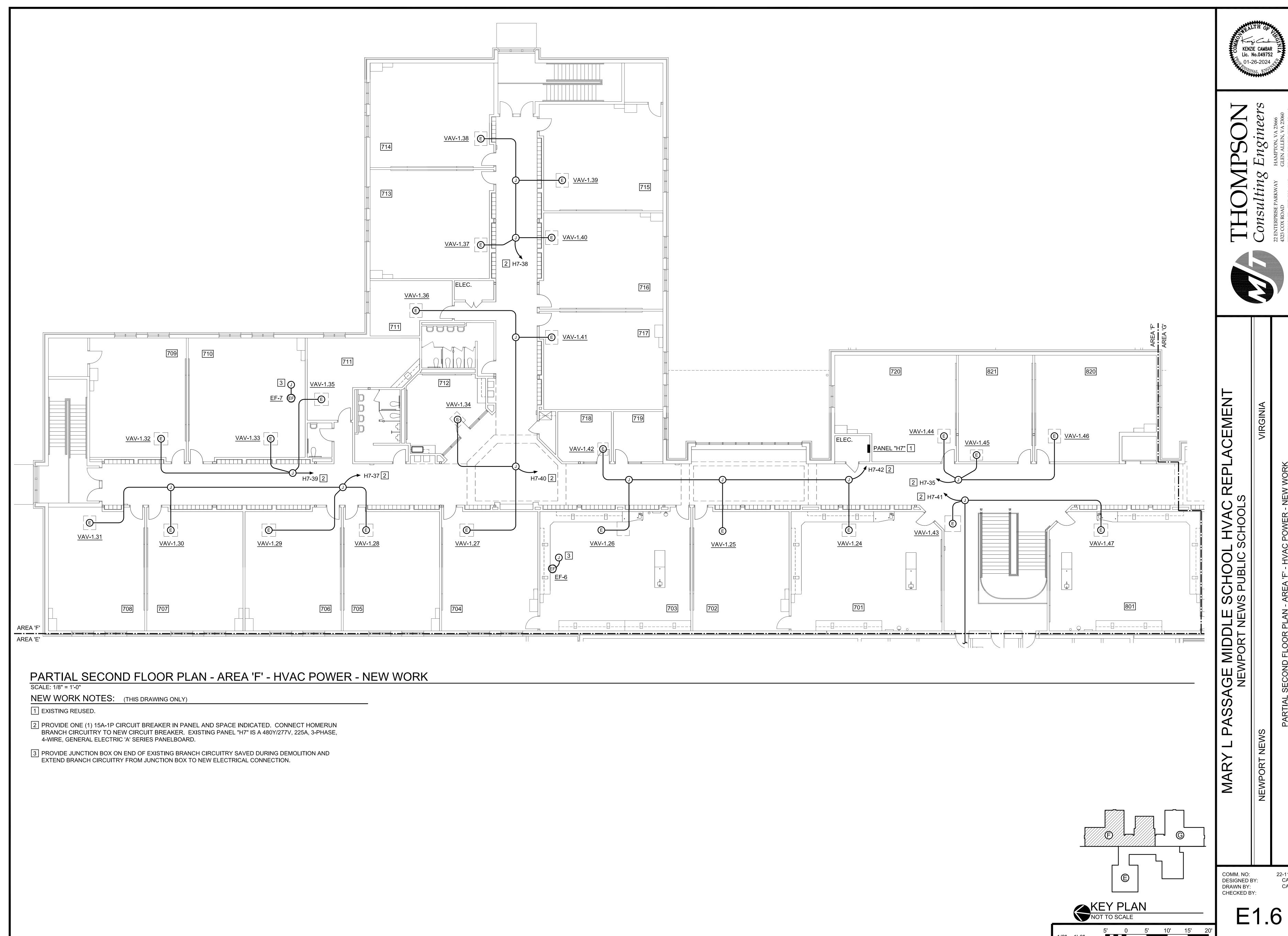
© COPYRIGHT THOMPSON CONSULTING ENGINEERS

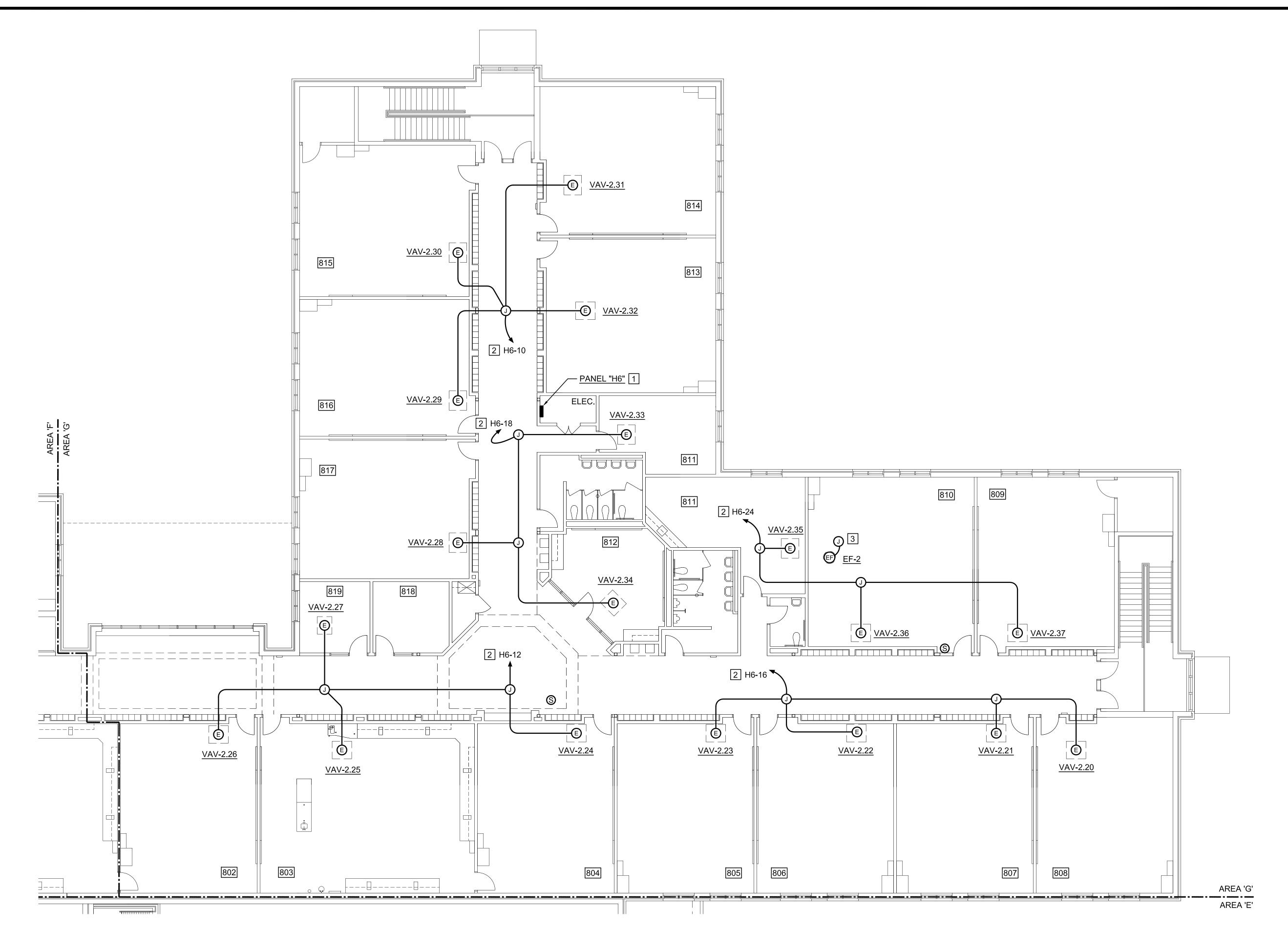

NEW WORK NOTES: (THIS DRAWING ONLY)

1 PROVIDE NEW PANEL. REUSE AND EXTEND EXISTING HOMERUN FEEDERS SAVED DURING DEMOLITION TO NEW PANELBOARD. SEE PANELBOARD SCHEDULE ON THIS DRAWING FOR ADDITIONAL INFORMATION.

2 CONNECT HOMERUN TO EXISTING SPARE 20A-1P CIRCUIT BREAKER IN PANEL AND SPACE INDICATED. SEE DRAWING E1.6 FOR LOCATION OF PANEL "H7".

LOAD SERVED	LOA	D (AN	(AMPS)		BKR.	WIRE	СКТ.	PHASE		СКТ.	WIRE	СКТ.	BKR.	LOAD (AI		MPS)	LOAD SERVED	
LOAD SERVED	Α	В	С	KAIC	TRIP	SIZE	NO.	Α	В	С	NO.	SIZE	KAIC	TRIP	Α	В	С	LOAD SERVED
	68			35	100	3	1	$oxed{}$			2	10	35	25	15.2			AHU-3 (SUPPLY)
AHU-2		68					3			\prod	4					15.2		
			68				5	\prod		\prod	6						15.2	
	14				25	10	7	$\begin{bmatrix} 1 \end{bmatrix}$		\prod_{α}	8	12		15	4.8			AHU-3 (EXHAUST)
AHU-2A		14					9			\prod	10					4.8		
			14				11	\prod		\prod	12						4.8	
	14				25	10	13			\prod_{α}	14	12		15	4.8			
AHU-4		14					15				16					4.8		AHU-9
			14				17			\prod	18						4.8	
	11				20	12	19			\prod_{α}	20	_		-	_			SPACE
AHU-10		11					21			\prod_{\sim}	22	-		-		1		SPACE
			11				23			$\prod_{i=1}^{n}$	24	_		-			_	SPACE
SPACE	1				_	_	25				26	_		-	_			SPACE
SPACE					_	_	27				28	_		-		_		SPACE
SPACE			_		_	_	29			\prod_{\sim}	30	_		-			_	SPACE
SPACE	_				_	_	31			\prod_{\sim}	32	_		_	-			SPACE
SPACE		_			_	_	33				34	_		_		_		SPACE
SPACE			_		_	_	35				36	-		_			_	SPACE
SPACE	_				_	_	37			\prod_{\sim}	38	-		_	ı			SPACE
SPACE		_			_	_	39				40	_		_		_		SPACE
SPACE			_		_	_	41				42	_		_			_	SPACE

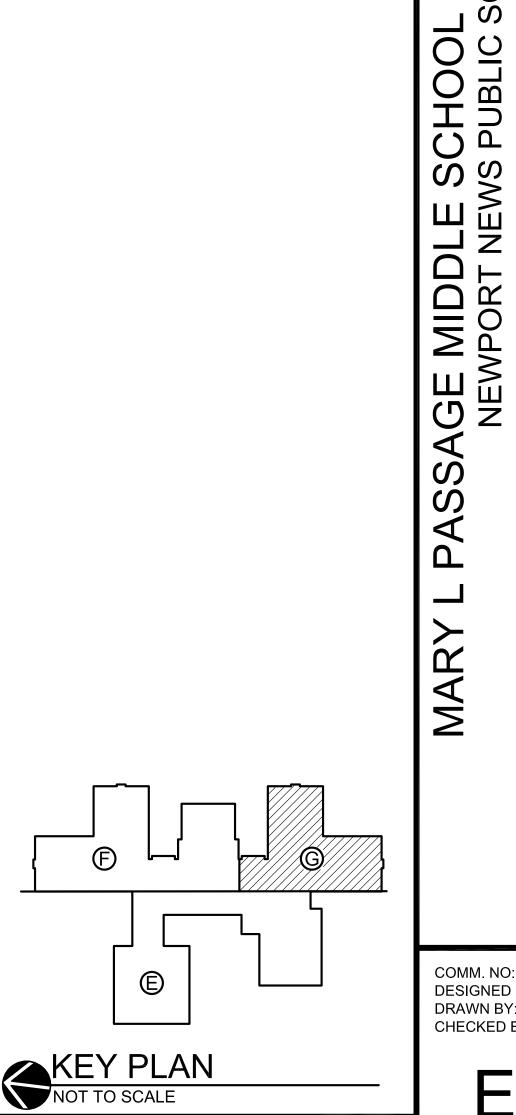

LOAD OEDVED	LOA	D (AN	300 (AMPS)		BKR.	WIRE	VIRE CKT.	. PHASE			СКТ.	WIRE	CKT.BKR.		LOAD (AMPS)			Ì
LOAD SERVED	Α	В	С	KAIC	TRIP	SIZE NO.	Α	В	С	NO.	SIZE	KAIC TRIP		A B		С	LOAD SERVED	
	68			35	100	3	1		П		2	8	35	40	21			AHU-5 (SUPPLY)
AHU-1		68					3		П		4					21		
			68				5	\prod		\prod	6						21	
	21				40	8	7			\prod_{α}	8	12		15	7.6			
AHU-1A		21					9			\prod	10					7.6		AHU-5 (EXHAUST)
			21				11				12						7.6	
	15.2				25	10	13			\prod_{n}	14	8		40	21			AHU-7 (SUPPLY)
AHU-8 (SUPPLY)		15.2					15			\prod	16					21		
			15.2				17			\prod	18						21	
	7.6				15	12	19			\prod_{n}	20	12		15	3.4			AHU-7 (EXHAUST)
AHU-8 (EXHAUST)		7.6					21				22					3.4		
			7.6				23				24						3.4	
SPACE	_				_	-	25			\prod_{\sim}	26	_		_	1			SPACE
SPACE		_			_	ı	27			$\int_{-\infty}^{\infty}$	28	-		_		_		SPACE
SPACE			_		_	ı	29				30	-		_			_	SPACE
SPACE	_				_	-	31			\prod_{\sim}	32	_		_	1			SPACE
SPACE		_			_	-	33			\prod_{\sim}	34	_		_		_		SPACE
SPACE			_		_	ı	35				36	_		_			_	SPACE
SPACE	_				_	ı	37			\prod	38	_		_	_			SPACE
SPACE		_			_	1	39				40	-		-		_		SPACE
SPACE			_	$T\downarrow$	_	_	41			Γ	42	_		_			_	SPACE

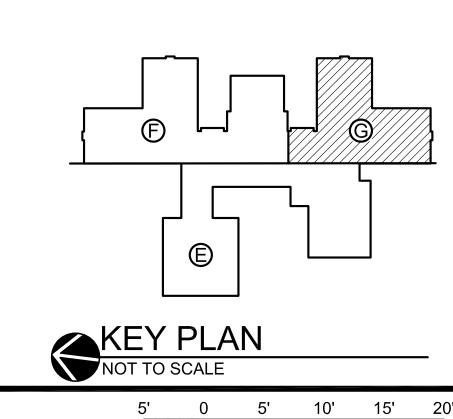


PASSAGE MIDDLE SCHOOL HVAC REPLACEMEN NEWPORT NEWS PUBLIC SCHOOLS

COMM. NO: DESIGNED BY: DRAWN BY: CHECKED BY:

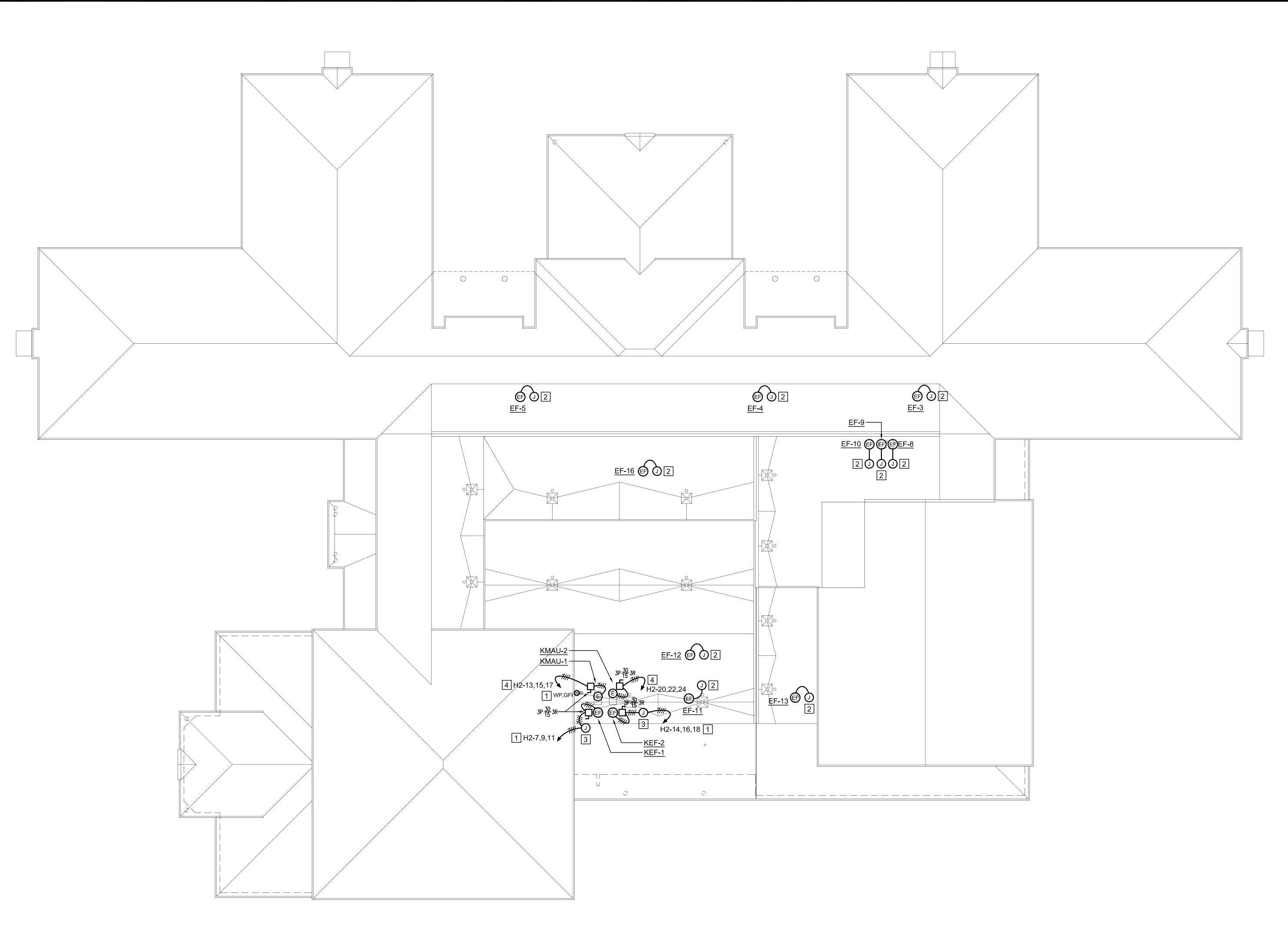
PARTIAL SECOND FLOOR PLAN - AREA 'G' - HVAC POWER - NEW WORK


SCALE: 1/8" = 1'-0"


NEW WORK NOTES: (THIS DRAWING ONLY)

1 EXISTING REUSED.

2 PROVIDE ONE (1) 15A-1P CIRCUIT BREAKER IN PANEL AND SPACE INDICATED. CONNECT HOMERUN BRANCH CIRCUITRY TO NEW CIRCUIT BREAKER. EXISTING PANEL "H6" IS A 480Y/277V, 125A, 3-PHASE, 4-WIRE, GENERAL ELECTRIC 'A SERIES' PANELBOARD.


3 PROVIDE JUNCTION BOX ON END OF EXISTING BRANCH CIRCUITRY SAVED DURING DEMOLITION AND EXTEND BRANCH CIRCUITRY FROM JUNCTION BOX TO NEW ELECTRICAL CONNECTION.

DESIGNED BY: DRAWN BY: CHECKED BY:

ACEMEN

ROOF PLAN - HVAC POWER - NEW WORK

SCALE: 1/16" = 1'-0"

NEW WORK NOTES: (THIS DRAWING ONLY)

1 EXISTING REUSED.

2 PROVIDE JUNCTION BOX ON END OF EXISTING BRANCH CIRCUITRY SAVED DURING DEMOLITION. RUN BRANCH CIRCUITRY BELOW ROOF AND UP THROUGH ROOF CURB, FROM JUNCTION BOX TO NEW EXHAUST FAN.

3 PROVIDE JUNCTION BOX ON END OF EXISTING BRANCH CIRCUITRY SAVED DURING DEMOLITION. PROVIDE 3 #12 AND 1 #12 GROUND IN 1/2" CONDUIT, RUN BRANCH CIRCUITRY BELOW ROOF AND UP THROUGH ROOF CURB, FROM JUNCTION BOX TO DISCONNECT SWITCH AND FROM DISCONNECT SWITCH TO NEW ELECTRICAL

4 PROVIDE 3 #12 AND 1 #12 GROUND IN 1/2" CONDUIT AND CONNECT TO EXISTING SPARE 20A-1P CIRCUIT BREAKER IN PANEL AND SPACE INDICATED. SEE DRAWING E1.1 FOR LOCATION OF PANEL "H2".

COMM. NO: DESIGNED BY: DRAWN BY: CHECKED BY: